КОМПЛЕКТНЫЕ ТРАНСФОРМАТОРНЫЕ ПОДСТАНЦИИ КТПСП мощностью от 160 до 1600 кВ·А НА БАЗЕ КОНСТРУКТИВА ОККЕN

Техническая информация

СОДЕРЖАНИЕ

1. ОБЩИЕ СВЕДЕНИЯ
2. СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ
3. УСЛОВИЯ ЭКСПЛУАТАЦИИ
4. КЛАССИФИКАЦИЯ
5. ТЕХНИЧЕСКИЕ ДАННЫЕ
6. КОНСТРУКЦИЯ И ОПИСАНИЕ РАБОТЫ
7. УСЛОВИЯ ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ
8. КОМПЛЕКТНОСТЬ ПОСТАВКИ
9. ФОРМУЛИРОВАНИЕ ЗАКАЗА
ПРИЛОЖЕНИЕ А – МЕСТА КРЕПЛЕНИЯ ШКАФА К ПОЛУ
ПРИЛОЖЕНИЕ Б – ПРОЕМЫ ДЛЯ ПОДВОДА КАБЕЛЕЙ
ПРИЛОЖЕНИЕ В – ТАБЛИЦЫ МОДУЛЕЙ
ПРИЛОЖЕНИЕ Г – СХЕМЫ СИЛОВЫХ ЦЕПЕЙ
ПРИЛОЖЕНИЕ Д – КОМПОНОВКИ ЩИТА
ПРИЛОЖЕНИЕ Е – ПРИМЕР ЗАПОЛНЕНИЯ ОПРОСНОГО ЛИСТА.
ПРИЛОЖЕНИЕ Ж – ОПРОСНЫЙ ЛИСТ НА СИЛОВЫЕ
ТРАНСФОРМАТОРЫ

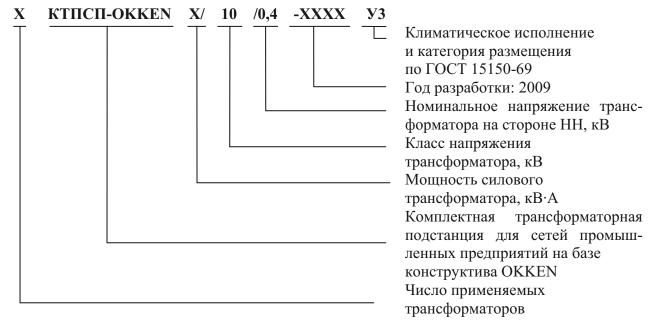
1. ОБЩИЕ СВЕДЕНИЯ

Настоящая техническая информация является документом, содержащим сведения по комплектным трансформаторным подстанциям серии КТПСП-ОККЕN (в дальнейшем КТП).

В связи с постоянной работой по усовершенствованию конструкции и технологии изготовления изделий, повышающей их надежность и улучшающей эксплуатационные характеристики, в конструкцию могут быть внесены незначительные изменения, не отраженные в данном каталоге.

Комплектные трансформаторные подстанции КТПСП-ОККЕN, мощностью 160 – 1600 кВ·А, на напряжение 6 (10) кВ предназначены для приема, преобразования и распределения электрической энергии трехфазного переменного тока частотой 50 Гц и автоматизации перехода на резервное или аварийное питание при потере основного питания и автоматического возврата на питание от основных источников при восстановлении напряжения.

КТП может применяться для обеспечения надежного электроснабжения электроприемников I категории и особой группы I категории в системах электроснабжения промышленных предприятий и объектов по добыче, переработке и транспортированию природного газа и нефти.


Эргономичная конструкция КТП на базе конструктива ОККЕN облегчает его установку на объекте, эксплуатацию и техническое обслуживание. Запатентованные новаторские решения обеспечивают соблюдение строгих требований по продолжительности и бесперебойности работы: возможность модификации и изменение конфигурации под напряжением.

Унифицированная система несущих конструкций и сборных шин позволяет создавать шкафы как с задним, так и с передним присоединением, обеспечивая при этом оптимальный уровень доступа.

Дополнительную информацию можно получить из "Каталога технических решений OKKEN".

2. СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ

2.1 СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КТП

2.2 СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ШКАФОВ

2.2.1 Обозначение вводного высоковольтного шкафа

Ш	B-	X	В
Наименование	Тип	Тип	По выполнению
изделия	напряжения	ввода	высоковольтного ввода
Шкаф	В ысокого напряжения	1 – с глухим вводом3 – с выключателем нагрузки	без обозначения – с нижним подводом кабелей; В – с верхним подводом кабелей

Пример обозначения вводного высоковольтного шкафа с глухим верхним подводом кабелей: **ШВ-1B**.

2.2.2 Обозначение низковольтных шкафов на базе конструктива ОККЕN

X	Ш	X	
Тип обслуживания	Наименование	Тип шкафа	
1 – одностороннего обслужива-	изделия	В – ввода	
ния	III	Л – линий	
2 – двухстороннего обслужива-	Ш каф	С – секционный	
ния		ВС – ввода и секционирования	

Пример обозначения:

Шкаф ввода одностороннего обслуживания: **1ШВ** Панель стыковки одностороннего обслуживания: **1ПС**

3. УСЛОВИЯ ЭКСПЛУАТАЦИИ

- Высота над уровнем моря не более 1000 м.
- Температура окружающей среды от 0° C* до плюс 40° C.
- \bullet Относительная влажность окружающего воздуха не более 80% при температуре 20° С.
- Окружающая среда невзрывоопасная, с содержанием коррозионно-активных агентов по атмосфере типа II по ГОСТ 15150. По требованию заказчика КТП может быть выполнена в антикоррозийном исполнении.
- Отсутствие резких толчков, ударов, сильной тряски, исключение работы на подвижных установках (по требованию заказчика шкафы РУНН могут изготавливаться в сейсмостойком исполнении AG2, AG3, AG5 по ГОСТ 30546.2-98).
- Степень защиты оболочки IP31 по ГОСТ 14254. По требованию заказчика IP42, IP54 (шкафы РУНН).
 - Требования техники безопасности по ГОСТ 12.2.007.4.
 - КТП соответствуют требованиям ГОСТ 14695-80 и ТУ16-530.191-77.

^{*}Нижняя граница температуры окружающей среды варьируется в зависимости от типов применяемой аппаратуры.

4. КЛАССИФИКАЦИЯ

КТП классифицируются по признакам, приведенным в таблице 4.1.

Таблица 4.1. Признаки классификации КТП

Признаки классификации КТП	Исполнения
По типу силового трансформатора	С масляным трансформатором
	С сухим трансформатором
По способу выполнения нейтрали транс-	С глухозаземленной нейтралью
форматора на стороне НН	С изолированной нейтралью
По взаимному расположению изделий	Однорядное
	Двухрядное
По числу применяемых трансформаторов	С одним трансформатором
	С двумя трансформаторами
По выполнению высоковольтного ввода	Кабельный снизу
	Кабельный сверху
По выполнению выводов в РУНН	Вывод вниз
	Вывод вверх
По типу обслуживания	Одностороннего
	Двухстороннего
По способу установки автоматических вы-	Выкатной на шасси
ключателей и блоков управления электро-	Съемный и отсоединяемый с Polyfast
двигателем	В выдвижном ящике
	Стационарный и съемный на плате
	Отсоединяемый на планке
По климатическому исполнению и катего-	У3 по ГОСТ 15150-69
рии размещения	33 HO 1 OC 1 13130-07
По степени защиты оболочки	ІР31 по ГОСТ 14254-96 (для шкафов РУНН
	по заказу – IP42, IP54)
По типу системы заземления	TT, IT; TN-S, TN-C, TN-C-S

5. ТЕХНИЧЕСКИЕ ДАННЫЕ

Технические данные КТП приведены в таблице 5.1.

Полный срок службы – не менее 25 лет при условии замены аппаратов, срок службы которых менее 25 лет.

Таблица 5.1. Технические данные КТП

Наименование параметра	Значение параметра для КТП						
Мощность силового трансформатора кВ·А	160	250	400	630	1000	1250	1600
Номинальное напряжение, кВ: на стороне ВН на стороне НН	6; 10 0,4; (0,66)						
Ток термической стойкости в течение 1 с, кА:							
УВН РУНН	16 50	16 50	16 50	16 50	16 50	16 50	16 80
Ток электродинамической стойкости, кА:							
УВН РУНН	41 110	41 110	41 110	41 110	41 110	41 110	41 176
Номинальный ток сборных шин РУНН, кА	0,23	0,36	0,58	0,91	1,445	1,81	2,31
Ток предохранителя УВН, А для напряжения кВ:							
6 10	25 25	40 25	63 40	80 63	100 80	160 100	200 100
Диапазон номинальных токов автоматических выключателей в шкафах линий, А	1–630 1–3200						
Диапазон номинальных токов блоков для управления электродвигателем, А	до 630 (250 кВт)						
Диапазон номинальных токов автоматических выключателей в шкафах ввода НН, А	250 – 400	400 – 630	630 – 1000	1000 – 1600	1600 – 2500	2000 – 2500	2500 – 3200
Потери КТП (суммарные потери силового трансформатора), кВт, не более:					_		
масляный трансформатор сухой трансформатор	3,31 2,80	4,77 3,90	6,43 5,10	8,51 7,38	12,40 10,55	15,15 12,85	18,65 14,50
Виды разделения ограждения-ми и перегородками	2b; 3b; 4a; 4b						

6. КОНСТРУКЦИЯ И ОПИСАНИЕ РАБОТЫ

КТП состоит из:

- 1) вводного устройства со стороны высокого напряжения (УВН) 2 шт;
- 2) силового трансформатора 2 шт;
- 3) кожуха выводов силового трансформатора -2 шт (только для КТП с масляными трансформаторами);
 - 4) распределительного устройства низкого напряжения (РУНН), состоящего из:
 - 4.1) панели стыковки -2 шт;
 - 4.2) шкафа выключателя рабочего ввода 2 шт;
 - 4.3) шкафа секционного выключателя 1 шт;
 - 4.4) шкафа отходящих линий количество по заказу.

Соединение секций двухтрансформаторной КТП осуществляется с помощью силовых кабелей или шинопроводом Canalis.

По заказу КТП могут изготавливаться иных конфигураций (например, с отдельно стоящим трансформатором).

КТП комплектуются трансформаторами производства УП "МЭТЗ им. В.И. Козлова":

- 1) сухими трансформаторами серии ТСЗГЛ (Ф);
- 2) масляными трансформаторами в гофробаке серии ТМГ11.

Трансформаторы серий ТМГ и ТСЗГЛ (Φ) всех мощностей, изготовленные для установки в КТП, укомплектованы катками для перемещения и предназначены для установки в КТП на катках.

По заказу КТП могут комплектоваться силовыми трансформаторами прочих производителей, что требует дополнительного согласования с заводом в части способа соединения трансформаторов с УВН и РУНН, а также общих габаритных размеров КТП.

6.1 СУХИЕ ТРАНСФОРМАТОРЫ СЕРИИ ТСЗГЛ (Ф)

Трансформаторы серии ТСЗГЛ (Φ) (трансформатор сухой, защищенный, с обмотками в геафолевой литой изоляции, Φ – выход шин ВН на фланец) изготавливается на основе катушек фирмы SIEMENS AG и устанавливаются своей наибольшей стороной вдоль основной оси КТП.

Общий вид трансформаторов серии ТСЗГЛ (Ф) показан на рисунках 6.1 и 6.2.

Для КТП с трансформатором ТСЗГЛ и глухим вводом на стороне ВН присоединение питающего кабеля выполняется непосредственно к выводам ВН силового трансформатора через отверстия с сальниковыми уплотнениями, расположенными в дне трансформатора (для КТП с нижним подводом кабеля) или на крыше трансформатора (для КТП с верхним подводом кабеля).

Для КТП с трансформатором ТСЗГЛФ и выключателем нагрузки на стороне ВН питающий кабель присоединяется к выводам шкафа УВН, который своей боковой стенкой крепится к стыковочному фланцу трансформатора, при этом шины шкафа заходят внутрь силового трансформатора. Соединение шин шкафа и выводов ВН трансформатора осуществляется под кожухом последнего. Соединение трансформаторов ТСЗГЛ (Ф) с РУНН осуществляется шинами посредством стыковки фланца трансформатора, расположенного на стороне НН и панели стыковки, при этом шины трансформатора заходят в панель стыковки.

Со стороны выводов ВН и РУНН, в стенках трансформатора, установлены сальники для прохождения проводов цепей вторичной коммутации (от установленного теплового реле в шкафы РУНН и т. д.).

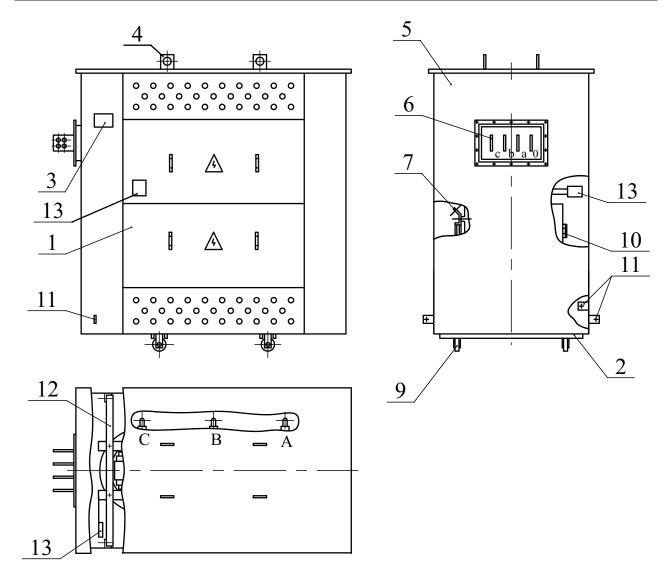


Рис. 6.1. Трансформатор ТСЗГЛ для КТП с глухим вводом кабеля на стороне ВН

1 — съемные стенки кожуха; 2 — швеллер; 3 — табличка; 4 — пластина для подъема трансформатора; 5 — кожух; 6 — вывод НН; 7 — вывод ВН; 8 — заглушка ввода кабеля ВН; 9 — транспортный ролик; 10 — клеммы регулирования напряжения ВН; 11 — узел заземления трансформатора; 12 — уголок, устанавливаемый на время транспортирования; 13 — реле теплозащиты ТР-100.

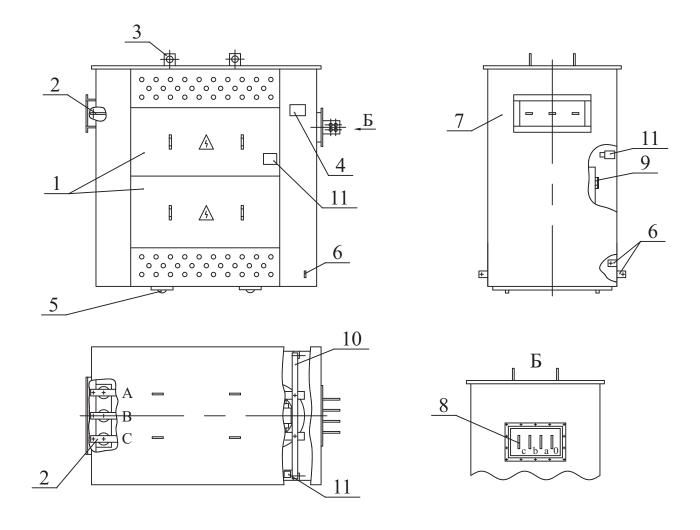


Рис. 6.2. Трансформатор ТСЗГЛФ для КТП с вводом кабеля через выключатель нагрузки на стороне ВН

1 — съемные стенки кожуха; 2 — вывод BH; 3 — пластина для подъема трансформатора;

4 – табличка; 5 – транспортный ролик; 6 – узел заземления трансформатора;

7 — кожух; 8 — вывод HH; 9 — клеммы регулирования напряжения BH; 10 — уголок, устанавливаемый на время транспортирования; 11 — реле теплозациты TP-100.

В стандартном варианте трансформатор комплектуется тепловым реле ТР-100, позволяющим выполнить его двухступенчатую защиту от перегрева, первая ступень которой действует на сигнал, а вторая — на отключение выключателей 10 кВ и 0,4 кВ. Реле измеряет температуру нагрева обмоток и сердечника трансформатора с отображением ее на дисплее блока, осуществляет сравнение измеренной температуры по каждому каналу с двумя заданными уровнями: "ТРЕВОГА", "РАСЦ ЕПЛЕНИЕ", задание (по заказу в процессе производства) уставок по каждому из уровней компарирования. Дополнительно реле может осуществляться выдача информации о текущих значениях температуры трех обмоток и магнитопровода, диагностической информации и состояния выходных сигналов в систему мониторинга подстанции по стандартным цифровым интерфейсам связи (RS-485). По заказу трансформатор может комплектоваться другими устройствами контроля температуры.

6.2 МАСЛЯНЫЕ ТРАНСФОРМАТОРЫ СЕРИИ ТМГ

Трансформаторы серии ТМГ (трансформатор масляный герметичный), изготавливаются в герметичном гофробаке и не требуют обслуживания на протяжении всего срока службы. Трансформаторы устанавливаются своей наибольшей стороной поперек основной оси КТП.

Трансформаторы мощностью 160, 250, 400 кВ·А комплектуются электроконтактным мановакуумметром, позволяющим выполнить защиту трансформатора от превышения давления в баке путем подачи сигнала на отключение выключателей 10 кВ и 0,4 кВ, и жидкостным стеклянным термометром, позволяющим визуально контролировать температуру масла в баке.

Трансформаторы мощностью 630, 1000, 1600 кВ·А комплектуются электроконтактным мановакуумметром и манометрическим сигнальным термометром, позволяющим выполнить сигнализацию при превышении температуры масла.

Провода от мановакуумметра и манометрического сигнального термометра выводятся на коробку зажимов, установленную на крышке трансформатора.

Для КТП с трансформатором ТМГ и глухим вводом на стороне ВН питающий кабель присоединяется к выводам шкафа УВН типа ШВ-1, который, в свою очередь, соединяется с силовым трансформатором шинами.

Для КТП с трансформатором ТМГ и выключателем нагрузки на стороне ВН питающий кабель присоединяется к выводам шкафа УВН типа ШВ-3, который, в свою очередь, соединяется с силовым трансформатором шинами.

Соединение трансформаторов ТМГ с РУНН осуществляется шинами. Сверху трансформатор накрывается кожухом, защищающим его выводы ВН и НН и обеспечивающим необходимую степень защиты оболочки IP. Кожух трансформатора крепится к боковым стенкам шкафа УВН и панели стыковки. Сверху в кожухе имеется люк для обеспечения доступа к переключателю напряжений.

Общий вид трансформаторов серии ТМГ для подстанций серии КТПСП показан на рисунке 6.3.

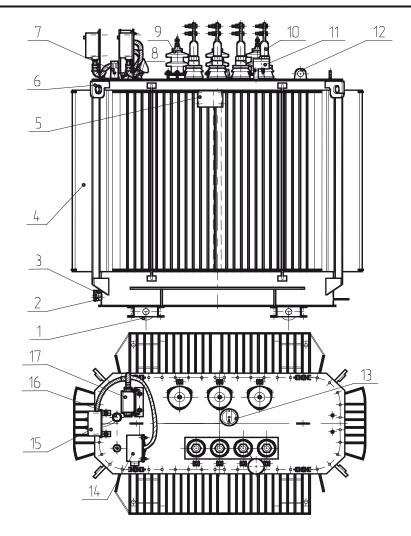


Рис. 6.3. Общий вид трансформатора серии ТМГ

1 - ролик транспортный; 2 - пробка сливная; 3 - зажим заземления; 4 - бак; 5 - табличка; 6 - серьга для подъема трансформатора; 7 - маслоуказатель; 8 - патрубок для заливки масла; 9 - ввод ВН; 10 - ввод НН; 11 - пробивной предохранитель (устанавливается по заказу потребителя); 12 - серьга для подъема крышки трансформатора; 13 - переключатель; 14 - мановакуумметр; 15 - коробка зажимов; 16 - гильза для термометра; 17 - манометрический термометр.

6.3 ШКАФЫ УВН

Способы соединения шкафов УВН с силовыми трансформаторами описаны в п. 6.2.

Главные цепи УВН выполняются по заказу медными или алюминиевыми шинами. Шкафы УВН выполняются в виде шкафов одностороннего или двухстороннего обслуживания. Двери шкафов имеют замки, открываемые только с помощью специальных ключей, отличных от ключей шкафов РУНН.

УВН изготавливаются следующих исполнений:

- ШВ-1 шкаф "глухого ввода" служит для присоединения высоковольтного питающего кабеля к силовому масляному трансформатору. Общий вид шкафа ШВ-1 показан на рисунке 6.4;
- ШВ-3 шкаф с автогазовым выключателем нагрузки NALF с предохранителями (производства ABB). Общий вид шкафа ШВ-3 показан на рисунке 6.5.

Ввод питающего кабеля в шкафы УВН осуществляется через два отверстия диаметром 60 мм, расположенных в дне шкафа (при нижнем подводе) или в крыше (при верхнем подводе).

Для разгрузки оболочки шкафа УВН от избыточного давления при возникновении внутри шкафа дугового короткого замыкания на крыше установлен клапан разгрузки.

В дверях шкафа ШВ-3 с фасадной и тыльной сторон предусмотрены смотровые окна для визуального контроля положения главных и заземляющих ножей. Со стороны силового трансформатора установлен сальник для прохода проводов цепей вторичной коммутации. Питание оперативных цепей шкафа осуществляется от оперативных цепей РУНН. Схемой шкафа предусмотрены отключение выключателя нагрузки при перегорании предохранителей, сигнализация светодиодными лампами положения главных ножей, выдача сигналов о положении главных ножей в АСУ сухими контактами.

В шкафу ШВ-3 предусмотрены следующие блокировки:

- блокировка, исключающая возможность включения заземляющих ножей при включенном выключателе и включения выключателя при включенных заземляющих ножах;
 - блокировка, исключающая открытие двери при включенном выключателе нагрузки;
- блокировка на включение заземляющих ножей выключателя нагрузки при включенном автоматическом выключателе на вводе в РУНН, исключающая возможность подачи напряжения от шкафов РУНН через трансформатор на включенные ножи выключателя нагрузки.

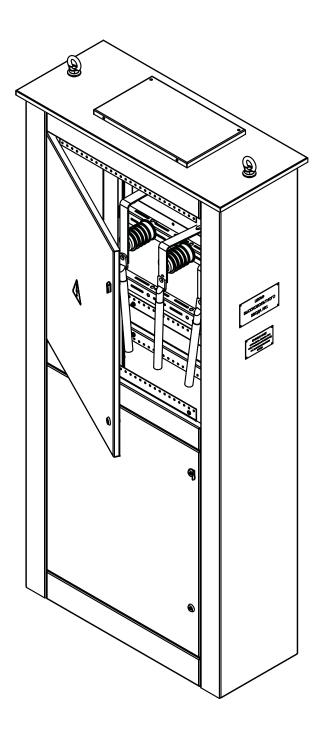


Рис. 6.4. Общий вид шкафа ШВ-1 (глухого ввода к трансформатору ТМГ)

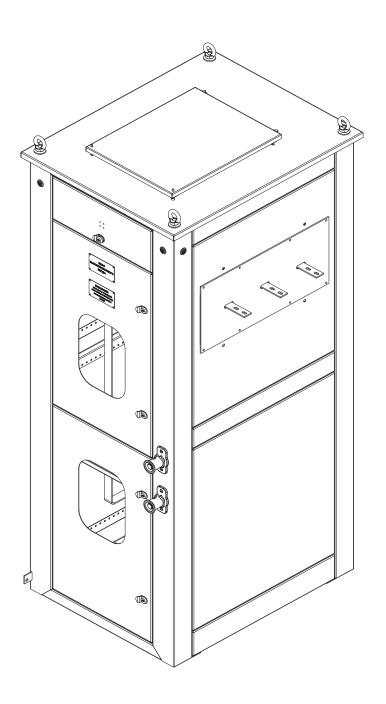


Рис. 6.5. Общий вид шкафа ШВ-3

6.4 ШКАФЫ РУНН

Шкафы РУНН выполнены в виде шкафов одностороннего или двухстороннего обслуживания.

Шкафы РУНН по своему функциональному назначению делятся на:

- панели стыковки с трансформатором;
- шкафы выключателя ввода;
- шкафы секционного выключателя;
- шкафы отходящих линий.

Шкафы РУНН представляют собой сборочную единицу, полностью готовую к установке на объекте и стыковке друг с другом.

Шкаф РУНН позволяет разместить силовую коммутационную аппаратуру и шины и разделен на четыре полностью отгороженных отсека.

Вспомогательные устройства и присоединения находятся в специальных отсеках, которые расположены в задней или боковой части шкафа. Такая конструкция позволяет защитить вспомогательные устройства от нежелательных воздействий (нагрев, электромагнитное излучение) силовых цепей. Минимальная форма секционирования шкафа (вид разделения ограждениями и перегородками) — 2b.

Степень защиты IP2X обеспечивается при открытых дверцах отсеков коммутационной аппаратуры и при нахождении функциональных блоков в положении "Испытание", "Выкачено" или "Извлечено".

Главные сборные шины установлены горизонтально в огороженном отсеке в верхней части щита и состоят из медных пластин единого сечения (40x10), количество которых зависит от номинального тока, температуры окружающей среды и степени защиты оболочки.

Распределительные сборные шины расположены в огороженном отсеке позади зоны коммутационной аппаратуры и состоят из шин толщиной 10 мм, сечение и количество которых зависит от тока, протекающего в ячейке. Доступ к сборным шинам защищен спереди изолирующими решетками IP2X.

Функциональные блоки по способу установки и обслуживания бывают следующих вариантов: съемный и отсоединяемый с Polyfast; в выдвижном ящике; стационарный и съемный на плате; отсоединяемый на планке.

Съемный функциональный блок с устройством Polyfast. Для распределительной системы это решение обеспечивает максимальный уровень гибкости и безопасности:

- удобство расширения и переконфигурации;
- простота перехода на другой номинальный ток;
- предупреждение распределения дуги внутри функционального блока;
- безопасность съема;
- идентификация опасных зон;
- прокладка проводов силовых и вторичных цепей на снятом блоке;
- удобство захвата.

Функциональный блок состоит из неподвижной части, устанавливаемой и снимаемой под напряжением, оснащенной втычными контактами со стороны источника и со стороны нагрузки и из съемного соединительного устройства Polyfast, служащего опорой выключателя стационарного типа.

Отсоединяемый функциональный блок с устройством Polyfast. Данное решение предлагает экономичную альтернативу съемным блокам.

Описание данного блока аналогично описанию съемного блока с устройством Polyfast, за исключением зажимов со стороны нагрузки: кабели со стороны нагрузки присоединяются непосредственно к соответствующим клеммам коммутационного аппарата. Вторичные цепи

подключены к выдвижным колодкам со скользящими контактами, органы управления расположены за дверцей.

Функциональный блок в выдвижном ящике. Выкатной элемент в выдвижном ящике позволяет создать функциональный блок из нескольких механически объединенных аппаратов, который может устанавливаться в положения "Вкачено/Испытание/Выкачено/Извлечено", допускает выполнение процедур запрета доступа и включает в себя элементы контроля и управления на передней панели.

Коммутационная аппаратура размещена на подвижной части при помощи соединительного устройства или платы. Подвижная часть перемещается по направляющим. Усилие перемещения невелико благодаря использованию подшипников.

Индикатор, соединенный с механическим указателем на передней панели, обеспечивает отображение положений "Вкачено/Испытание/Выкачено".

Расположение органов управления и блокировочных устройств на передней панели блока эргономично и обеспечивает интуитивность выполнения операций.

Функциональный блок на плате, со стационарным или втычным аппаратом на цоколе. Данный тип функционального блока сочетает в себе экономичность неподвижного блока с гибкостью, обеспеченной втычными соединениями со сборными распределительными шинами. Коммутационные аппараты стационарного типа или втычные на цоколе установлены на опорном узле с зажимами, что позволяет добавить отходящую линию за короткое время отключения. Механическое предохранительное устройство препятствует случайному выдвижению функционального блока; для извлечения последнего необходимо отключить шкаф. На одной плате можно установить два аппарата (до 250 A). Кабели со стороны нагрузки присоединяются к контактным площадкам или клеммам в боковом или заднем отсеках. Доступ к органам управления на передней панели прикрывается индивидуальной дверцей.

Отсоединяемый функциональный блок на планке. Решение с использованием отсоединяемой планки применяется в небольших распределительных системах и отходящих линиях управления электродвигателем прямого пуска с небольшим номинальным током. При переднем присоединении это решение оптимизирует стоимость и экономит пространство, ставя при этом на первое место взаимозаменяемость и гибкость реконфигурации под напряжением. Для извлечения функционального блока необходимо разъединить присоединения со стороны нагрузки. Планка состоит из неподвижной части, устанавливаемой и снимаемой под напряжением, оснащенной втычными контактами со стороны источника (двойные зажимы), и подвижной части, служащей опорой для коммутационных аппаратов стационарного типа. Кабели со стороны нагрузки присоединяются к клеммам аппарата, вторичные цепи подключаются к разъемам. Органы управления расположены за дверцей.

6.4.1 ПАНЕЛЬ СТЫКОВКИ ОДНОСТОРОННЕГО ОБСЛУЖИВАНИЯ 1ПС

Панель стыковки одностороннего обслуживания предназначена для:

- 1) стыковки щита ОККЕN с силовыми трансформаторами (сухими и масляными);
- 2) размещения релейной аппаратуры.

Типовая панель стыковки реализована в габаритах 2350х450х600 мм (высота х ширина х глубина). По требованию заказчика высота может составлять 2200 мм.

Конфигурацию панели и габаритные размеры – смотрите рисунок 6.6.

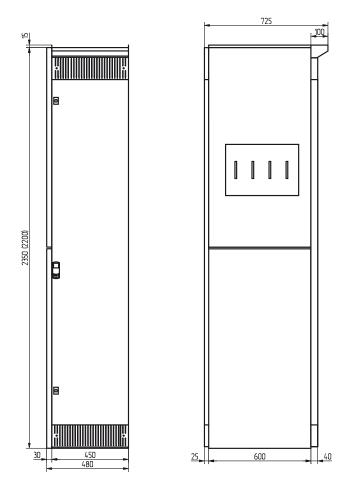


Рис. 6.6. Панель 1ПС для стыковки с трансформатором, стоящим слева

Со стороны трансформатора панель стыковки закрывается торцевой панелью шириной 30 мм.

Места крепления панели стыковки к полу – смотрите приложение А.

6.4.2 ШКАФ ВВОДА ОДНОСТОРОННЕГО ОБСЛУЖИВАНИЯ 1ШВ

Шкаф ввода одностороннего обслуживания предназначен для:

- 1) ввода питания 0,4 кВ с установкой выдвижных выключателей Masterpact NT06...NT16 или NW08...NW32;
 - 2) установки релейной аппаратуры;
- 3) установки автоматических выключателей отходящих линий, блоков управления электродвигателем.

В зависимости от типа подвода питания к шкафу ввода возможны следующие конфигурации:

6.4.2.1 Подвод питания от трансформатора через панель стыковки

При данной конфигурации отходящие линии отсутствуют. Конфигурацию шкафа и габаритные размеры — смотрите рисунок 6.7. Места крепления шкафа к полу — смотрите приложение A.

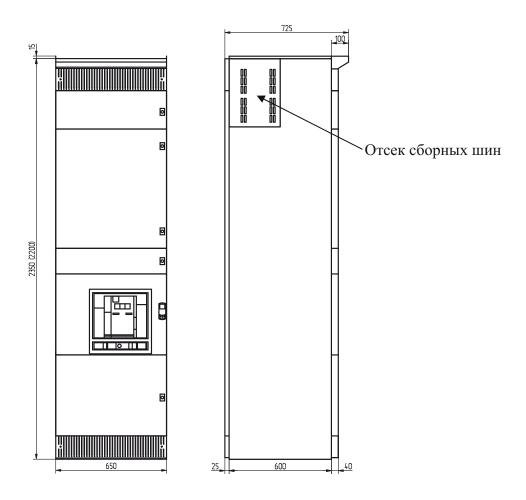


Рис. 6.7. Шкаф 1ШВ при подводе питания от панели стыковки

6.4.2.2 Подвод питания кабелем или шинопроводом Canalis

- 1) При подводе питания **кабелем снизу** отходящие линии отсутствуют. Конфигурацию шкафа и габаритные размеры смотрите рисунок 6.7. Места крепления шкафа к полу смотрите приложение А. Проемы для подвода кабелей смотрите приложение Б.
- 2) При подводе питания **кабелем или шинопроводом Canalis сверху** в шкафу имеется возможность установки выключателя отходящей линии Masterpact NT (Compact NS) 600-1600 А. При этом кабель к отходящей линии подводится снизу.

Конфигурацию шкафа и габаритные размеры – смотрите рисунок 6.8.

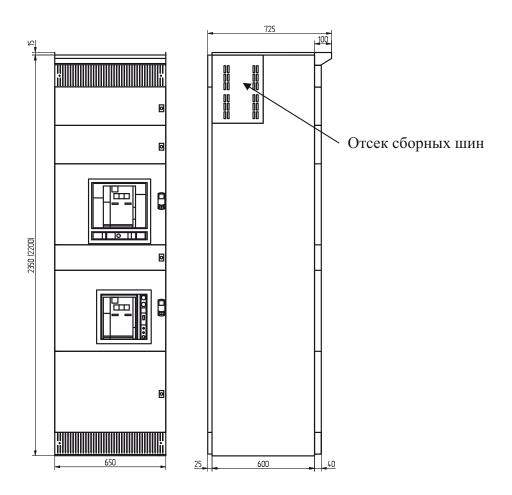


Рис. 6.8. Шкаф 1ШВ с отходящей линией

Места крепления шкафа к полу – смотрите приложение A. Проемы для подвода кабелей – смотрите приложение B.

3) Подвод питания кабелем или шинопроводом Canalis с установкой отходящих линий на токи до 630 А. При данной конфигурации шкафа необходима установка кабельной вставки. Кабельная вставка является частью шкафа и устанавливается справа. Она предназначена для ввода силовых и контрольных кабелей сверху или снизу. Ширина кабельной вставки по фасаду составляет 450 мм. В зависимости от количества и сечения подводимых кабелей ширина может составлять 350 мм или 650 мм.

При высоте шкафа 2350 мм отходящие линии занимают 36 модулей; при высоте шкафа 2200 мм - 30 модулей (1 модуль = 25 мм).

Количество и тип отходящих линий – смотрите таблицу 6.1.

Количество модулей, занимаемых отходящей линией, зависит от типа аппарата и определяется согласно приложению В.

Таблица 6.1. Количество и тип отходящих линий, устанавливаемых в шкафу ввода

Тип	Количество
Masterpact NT/ Compact NS до 1600 A	1
Compact NS 100-630 A	до 7
Блоки управления электродвигателем	до 24

Места крепления шкафа к полу — смотрите приложение A. Проемы для подвода кабелей — смотрите приложение B.

Габаритные размеры шкафа, а также пример размещения 2-х выключателей Compact NS630 и 3-х выключателей Compact NS250 – смотрите рисунок 6.9 и пример 1.

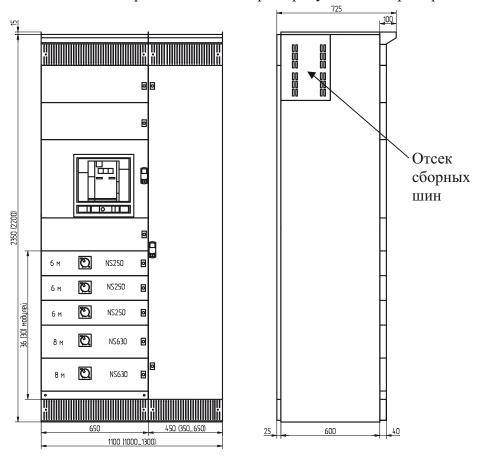


Рис. 6.9. Шкаф 1ШВ с отходящими линиями и кабельной вставкой

Пример 1. Компоновка шкафа 1ШВ с отходящими линиями.

Согласно приложению В Compact NS250 (съемный и отсоединяемый с Polyfast) занимает 6 модулей, а Compact NS630 - 8 модулей.

6 модулей х 3 + 8 модулей х 2 = 34 модуля

Оставшиеся 2 модуля закрываются заглушкой*.

^{*}Примечание: рекомендуется при компоновке шкафа оставлять свободные (резервные) модули.

Необходимо также учитывать, что суммарная длительная нагрузка всех отходящих присоединений (без учета ввода) в номинальном режиме не должна превышать 1640 A (IP31, 40° C).

6.4.3 ШКАФ ЛИНИЙ ОДНОСТОРОННЕГО ОБСЛУЖИВАНИЯ 1ШЛ

Шкаф отходящих линий одностороннего обслуживания предназначен для:

- 1) установки автоматических выключателей отходящих линий Compact NS на токи до 630 A;
- 2) установки блоков управления электродвигателем мощностью до 250 кВт;
- 3) установка автоматических выключателей отходящих линий Masterpact NW08...NW32, Masterpact NT08...NT16 или Compact NS630...NS1600 (не более двух).

Ячейки отходящих линий могут быть стационарного, отсоединяемого, съемного исполнения или в выдвижном ящике.

При высоте шкафа 2350 мм отходящие линии занимают 72 модуля; при высоте шкафа 2200 мм – 66 модулей.

Количество модулей, занимаемых отходящей линией, зависит от типа аппарата, способа его установки в ячейке и определяется согласно приложению В.

Габаритные размеры шкафа, а также пример размещения 2-х выключателей Compact NS630 (съемное исполнение), 5-ти блоков управления электродвигателем мощностью 15 кВт каждая (Тезуѕ U, отсоединяемое исполнение), 2-х блоков управления электродвигателем мощностью 30 кВт каждая (рубильник-разъединитель GS1 в выдвижном ящике), 1-го блока управления электродвигателем мощностью 30 кВт (Сотраст NS100 в выдвижном ящике) и 2-х блоков управления электродвигателем мощностью 90 кВт каждая (Сотраст NS250 в выдвижном ящике) — смотрите рисунок 6.10 и пример 2.

Места крепления шкафа к полу – смотрите приложение А. Проемы для подвода кабелей – смотрите приложение Б.

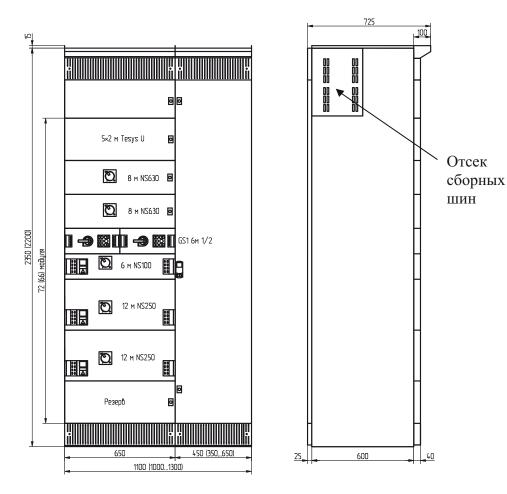


Рис. 6.10. Шкаф 1ШЛ

Пример 2. Компоновка шкафа 1ШЛ.

Согласно приложению B, Tesys U (отсоединяемое исполнение) занимает 2 модуля; Compact NS630 (съемное исполнение) занимает 8 модулей; GS1 (в выдвижном ящике) занимает 6 модулей и имеет возможность установки выдвижных блоков 1/2 ширины; Compact NS100 (в выдвижном ящике) занимает 12 модулей.

- 5×2 модуля $+ 2 \times 8$ модулей + 6 модулей + 6 модулей $+ 2 \times 12$ модулей = 62 модуля. Оставшиеся 10 модулей закрываются дверью*.
- *Примечание: рекомендуется при компоновке шкафа оставлять свободные (резервные) модули.
 - 5 блоков Tesys U можно установить за общей дверью.

Необходимо также учитывать, что суммарная длительная нагрузка всех отходящих присоединений в номинальном режиме не должна превышать 1640 A (IP31, 40° C).

Размер кабельной вставки по фасаду зависит от числа и мошности отходящих линий.

Габаритные размеры шкафа с двумя автоматическими выключателями отходящих линий Masterpact NT – смотрите рисунок 6.11.

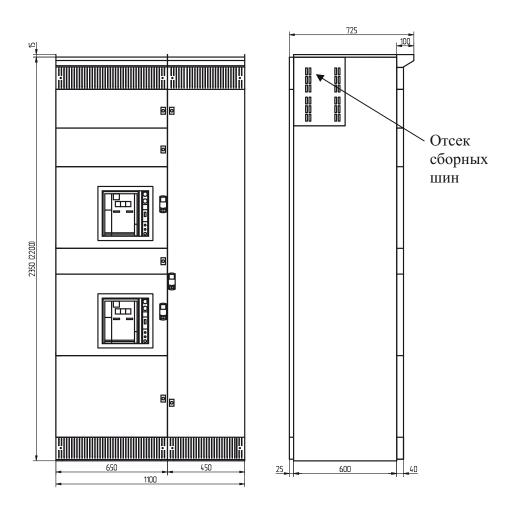


Рис. 6.11. Шкаф 1ШЛ с выключателями Masterpact NT

Необходимо также учитывать, что суммарная длительная нагрузка всех отходящих присоединений в номинальном режиме для данной конфигурации шкафа не должна превышать 3010 A (IP31, 40° C).

6.4.4 ШКАФ СЕКЦИОННЫЙ ОДНОСТОРОННЕГО ОБСЛУЖИВАНИЯ 1ШС

Шкаф секционный одностороннего обслуживания предназначен для:

- 1) секционирования с установкой выдвижных выключателей Masterpact NT08...NT16 или NW08...NW32;
 - 2) установки релейной аппаратуры.

Габаритные размеры шкафа – смотрите рисунок 6.12.

Места крепления шкафа к полу – смотрите приложение А.

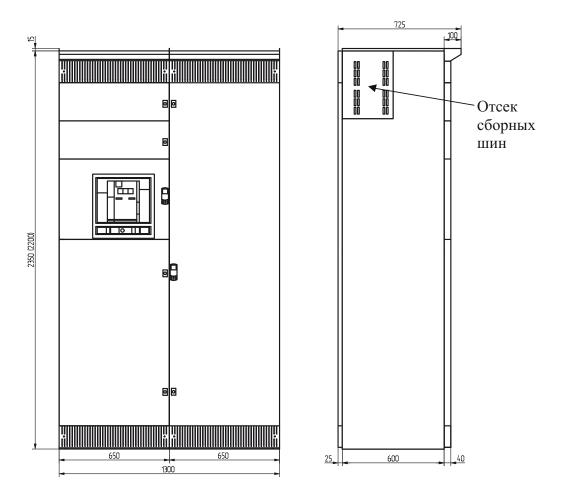


Рис. 6.12. Шкаф 1ШС

6.4.5 ШКАФ ВВОДА И СЕКЦИОНИРОВАНИЯ ОДНОСТОРОННЕГО ОБСЛУЖИВАНИЯ 1ШВС

Шкаф ввода и секционирования одностороннего обслуживания предназначен для:

- 1) одновременного ввода питания 0,4 кВ и секционирования с установкой выдвижных выключателей Masterpact NT08...NT16 или NW08...NW32;
 - 2) установки релейной аппаратуры.

Шкаф 1ШВС может находиться:

- 1) в центре щита при однорядной схеме КТП;
- 2) в начале каждой секции при двухрядной схеме КТП.

6.4.5.1 Шкаф 1ШВС при однорядной схеме КТП

Ввод питания на вводные выключатели осуществляется кабелем (сверху или снизу) или шинопроводом Canalis.

Габаритные размеры и конфигурацию шкафа смотрите рисунок 6.13. Варианты компоновки и силовую схему – смотрите рисунок 6.14.

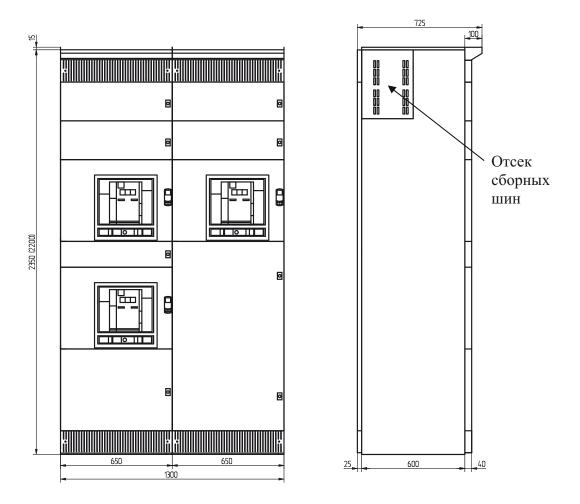


Рис. 6.13. Шкаф 1ШВС при однорядной схеме КТП

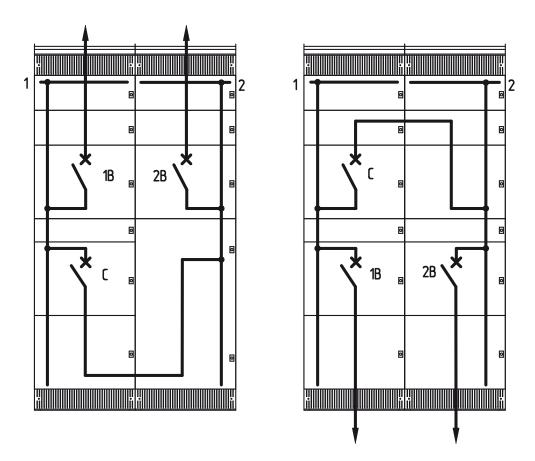


Рис. 6.14. Шкаф 1ШВС при однорядной схеме КТП

6.4.5.2 Шкаф 1ШВС при двухрядной схеме КТП

Ввод питания на вводные выключатели осуществляется кабелем (сверху или снизу) либо от панели стыковки. Соединение секций осуществляется кабелем (сверху или снизу) либо шинопроводом Canalis.

Габаритные размеры и конфигурацию шкафа смотрите рисунок 6.15. Варианты компоновки и силовую схему – смотрите рисунки 6.16, 6.17.

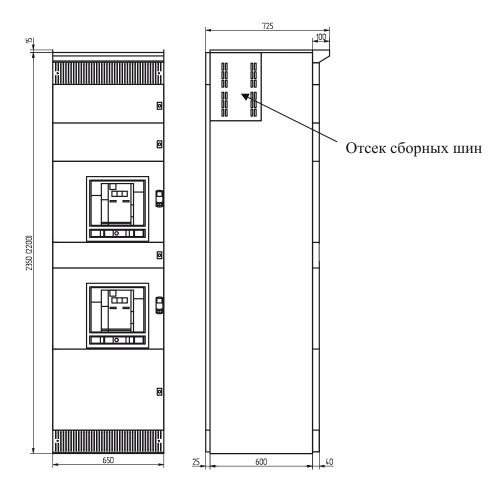


Рис. 6.15. Шкаф 1ШВС при двухрядной схеме КТП

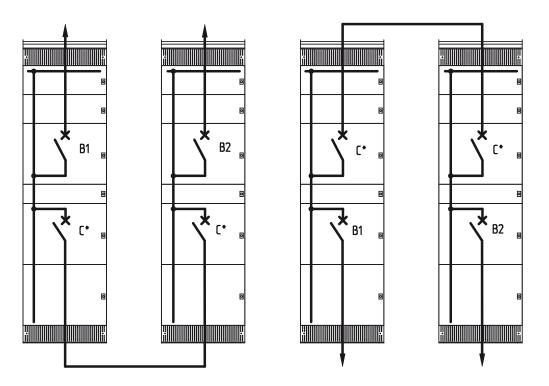


Рис. 6.16. Шкаф 1ШВС при двухрядной схеме КТП

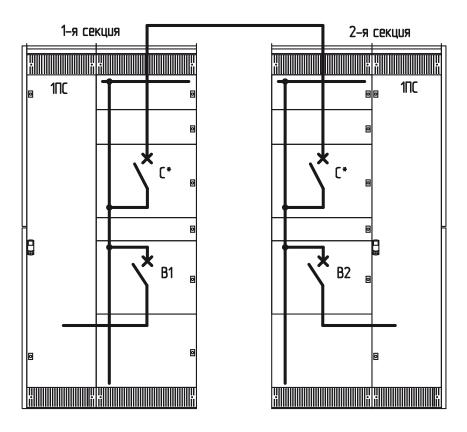


Рис. 6.17. Шкаф 1ШВС с подводом питания от панели стыковки

* Примечание: один из аппаратов выполняет роль секционного выключателя, второй аппарат является выключателем нагрузки, который должен быть постоянно включен в нормальном режиме работы и служит для создания видимого разрыва при проведении ремонтных работ.

Места крепления шкафа к полу – смотрите приложение А. Проемы для подвода кабелей – смотрите приложение Б.

6.4.6 ПАНЕЛЬ СТЫКОВКИ ДВУХСТОРОННЕГО ОБСЛУЖИВАНИЯ 2ПС

Панель стыковки двухстороннего обслуживания предназначена для:

- 1) стыковки щита ОККЕN с силовыми трансформаторами (сухими и масляными);
- 2) размещения релейной аппаратуры.

Типовая панель стыковки реализована в габаритах 2350х450х1000 мм (высота х ширина х глубина). По требованию заказчика высота может быть 2200 мм. Глубина панели стыковки зависит от глубины других шкафов, входящих в щит.

Конфигурацию панели стыковки и габаритные размеры – смотрите рисунок 6.18.

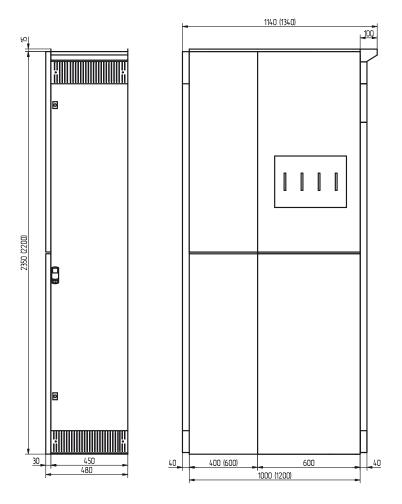


Рис. 6.18. Панель 2ПС для стыковки с трансформатором, стоящим слева

Со стороны трансформатора панель стыковки закрывается торцевой панелью шириной 30 мм. Места крепления панели стыковки к полу – смотрите приложение А.

6.4.7 ШКАФ ВВОДА ДВУХСТОРОННЕГО ОБСЛУЖИВАНИЯ 2ШВ

Шкаф ввода двухстороннего обслуживания предназначен для:

- 1) ввода питания 0,4 кВ с установкой выдвижных выключателей Masterpact NT08...NT16 или NW08...NW32;
 - 2) установки релейной аппаратуры;
- 3) установки автоматических выключателей отходящих линий, блоков управления электродвигателем.

В зависимости от типа подвода питания к шкафу ввода возможны следующие конфигурации:

6.4.7.1 Подвод питания от трансформатора через панель стыковки

При данной конфигурации отходящие линии отсутствуют. Конфигурацию шкафа и габаритные размеры – смотрите рисунок 6.19. Места крепления шкафа к полу – смотрите приложение A.

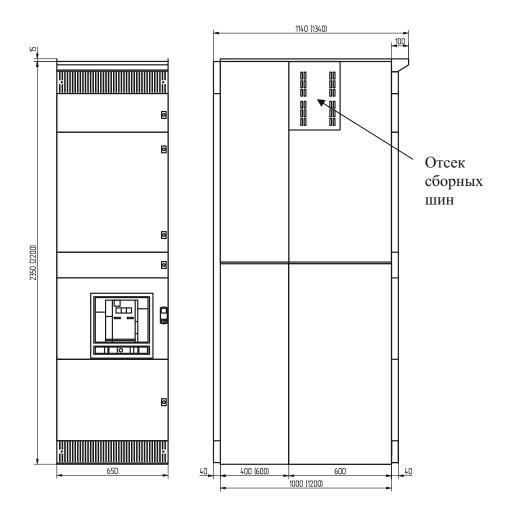


Рис. 6.19. Шкаф 2ШВ при подводе питания от панели стыковки

6.4.7.2 Подвод питания кабелем или шинопроводом Canalis

- 1) При подводе питания **кабелем снизу** в шкафу имеется возможность установки одного выключателя отходящей линий Masterpact NT (Compact NS) 600-1600 А. Конфигурацию шкафа (без отходящей линии) и габаритные размеры смотрите рисунок 6.19. Места крепления шкафа к полу смотрите приложение А. Проемы для подвода кабелей смотрите приложение Б.
- 2) При подводе питания **кабелем или шинопроводом Canalis сверху** в шкафу имеется возможность установки выключателей отходящих линий Masterpact NT (Compact NS) 600-1600 A, выключателей отходящих линий Compact NS на токи до 630 A, блоков управления электродвигателем. Количество и тип отходящих линий смотрите таблицу 6.2. Количество модулей, занимаемых отходящей лини зависит от типа аппарата и определяется согласно приложению B.

При высоте шкафа 2350 мм отходящие линией занимают 36 модулей; при высоте шкафа 2200 мм - 30 модулей (1 модуль = 25 мм).

Таблица 6.2. Количество и тип отходящих линий, устанавливаемых в шкафу ввода 2ШВ

Тип	Количество
Masterpact NT/ Compact NS до 1600 A	2
Compact NS 100-630 A	до 7
Блоки управления электродвигателем	до 24

Места крепления шкафа к полу – смотрите приложение А. Проемы для подвода кабелей – смотрите приложение Б.

Габаритные размеры шкафа 2ШВ с установкой двух выключателей отходящих линий Masterpact NT (Compact NS) 600-1600 A – смотрите рисунок 6.20.

Габаритные размеры шкафа 2ШВ, а также пример размещения 2-х выключателей Compact NS630 и 3-х выключателей Compact NS250 — смотрите рисунок 6.21 и пример 1. При этом кабель к отходящей линии подводится снизу.

Необходимо учитывать, что суммарная длительная нагрузка всех отходящих присоединений (без учета ввода) в номинальном режиме не должна превышать 1640 A (IP31, 40° C).

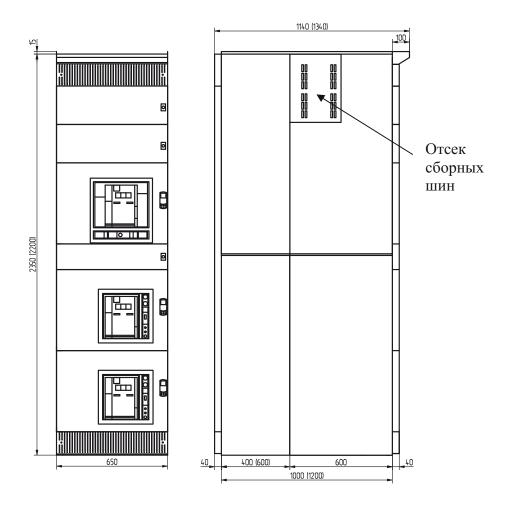


Рис. 6.20. Шкаф 2ШВ с двумя отходящими линиями Masterpact NT

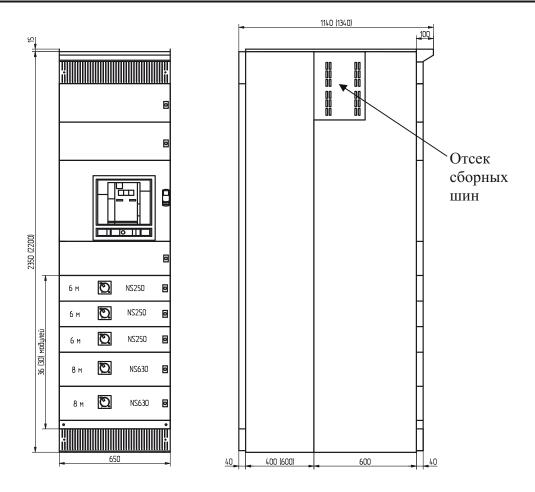


Рис. 6.21. Шкаф 2ШВ с отходящими линиями

6.4.8 ШКАФ ЛИНИЙ ДВУХСТОРОННЕГО ОБСЛУЖИВАНИЯ 2ШЛ

Шкаф отходящих линий двухстороннего обслуживания предназначен для:

- 1) установки автоматических выключателей отходящих линий Compact NS на токи до 630 A;
- 2) установки блоков управления электродвигателем мощностью до 250 кВт;
- 3) установки автоматических выключателей отходящих линий Masterpact NW08... NW16, Masterpact NT08... NT16 или Compact NS630... NS1600 (до трех).

Ячейки отходящих линий могут быть стационарного, отсоединяемого, съемного исполнений или в выдвижном ящике.

При высоте шкафа 2350 мм отходящие линии занимают 72 модуля; при высоте шкафа 2200 мм – 66 модулей.

Количество модулей, занимаемых отходящей линией зависит от типа аппарата, способа его установки в ячейке и определяется согласно приложению В.

Габаритные размеры шкафа, а также пример размещения 2-х выключателей Сотрасt NS630 (съемное исполнение), 5-ти блоков управления электродвигателем мощностью 15 кВт каждая (Tesys U, отсоединяемое исполнение), 2-х блоков управления электродвигателем мощностью 30 кВт каждая (рубильник-разъединитель GS1 в выдвижном ящике), 1-го блока управления электродвигателем мощностью 30 кВт (Сотраст NS100 в выдвижном ящике) и 2-х блоков управления электродвигателем мощностью 90 кВт каждая (Сотраст NS250 в выдвижном ящике) – смотрите пример 2, рисунок 6.22.

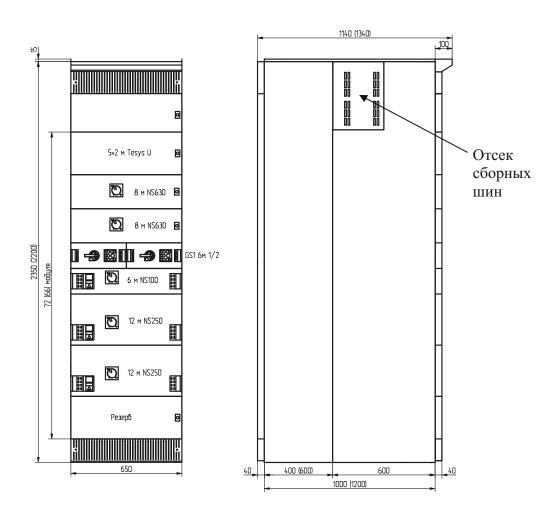


Рис. 6.22. Шкаф линий 2ШЛ

Габаритные размеры шкафа с двумя автоматическими выключателями отходящих линий Masterpact NT – смотрите рисунок 6.23.

Необходимо учитывать, что суммарная длительная нагрузка всех отходящих присоединений в номинальном режиме не должна превышать 1640 A (IP31, 40° C).

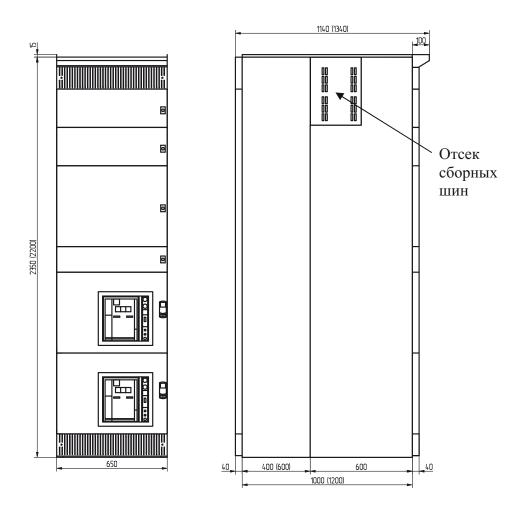


Рис. 6.23. Шкаф 2ШЛ с двумя выключателями Masterpact NT

При установке в шкафу 2ШЛ трех выключателей Masterpact NT глубина шкафа составляет 1400 мм (600+400+400).

Необходимо учитывать, что суммарная длительная нагрузка всех отходящих присоединений в номинальном режиме не должна превышать 3010 A (IP31, 40° C).

6.4.9 ШКАФ СЕКЦИОННЫЙ ДВУХСТОРОННЕГО ОБСЛУЖИВАНИЯ 2ШС

Шкаф секционный двухстороннего обслуживания предназначен для:

- 1) секционирования с установкой выдвижных выключателей Masterpact NT08...NT16 или NW08...NW32;
 - 2) установки релейной аппаратуры;
- 3) установки автоматических выключателей отходящих линий, блоков управления электродвигателем.

Габаритные размеры шкафа – смотрите рисунок 6.24.

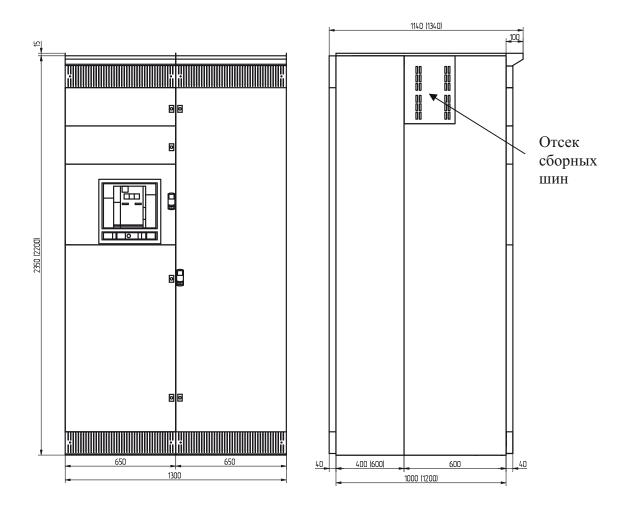


Рис. 6.24. Шкаф 2ШС

6.4.10 ШКАФ ВВОДА И СЕКЦИОНИРОВАНИЯ ДВУХСТОРОННЕГО ОБСЛУЖИВАНИЯ 2ШВС

Шкаф ввода и секционирования двухстороннего обслуживания предназначен для:

- 1) одновременного ввода питания 0,4 кВ и секционирования с установкой выдвижных выключателей Masterpact NT08...NT16 или NW08...NW32;
 - 2) установки релейной аппаратуры.

Шкаф 2ШВС может находиться:

- 1) в центре щита при однорядной схеме КТП;
- 2) в начале каждой секции при двухрядной схеме КТП.

6.4.10.1 Шкаф 2ШВС при однорядной схеме КТП

Ввод питания на вводные выключатели осуществляется кабелем (сверху или снизу) или шинопроводом Canalis.

Габаритные размеры и конфигурацию шкафа смотрите рисунок 6.25. Варианты компоновки и силовую схему – смотрите рисунок 6.26.

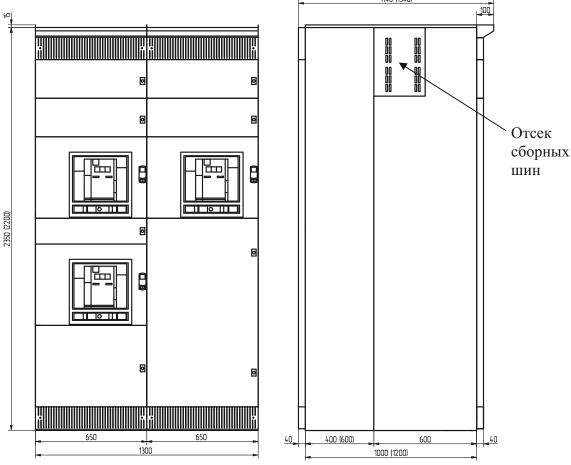


Рис. 6.25. Шкаф 2ШВС при однорядной схеме КТП

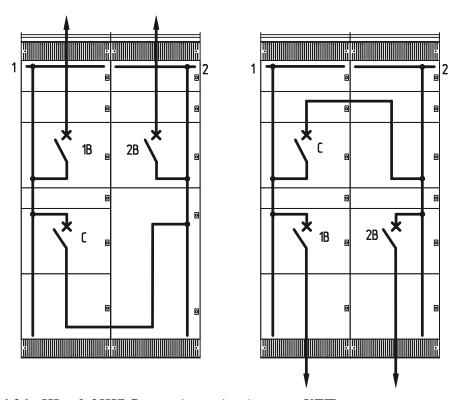


Рис. 6.26. Шкаф 2ШВС при однорядной схеме КТП

6.4.10.2 Шкаф 2ШВС при двухрядной схеме КТП

Ввод питания на вводные выключатели осуществляется кабелем (сверху или снизу) либо от панели стыковки. Соединение секций осуществляется кабелем (сверху или снизу) либо шинопроводом Canalis.

Габаритные размеры и конфигурацию шкафа смотрите рисунок 6.27. Варианты компоновки и силовую схему – смотрите рисунки 6.28, 6.29.

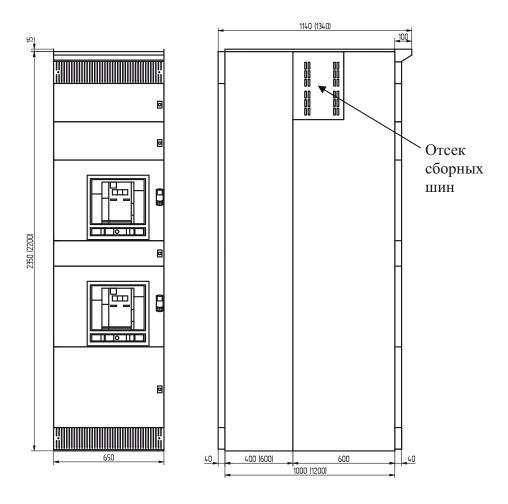


Рис. 6.27. Шкаф 2ШВС при двухрядной схеме КТП

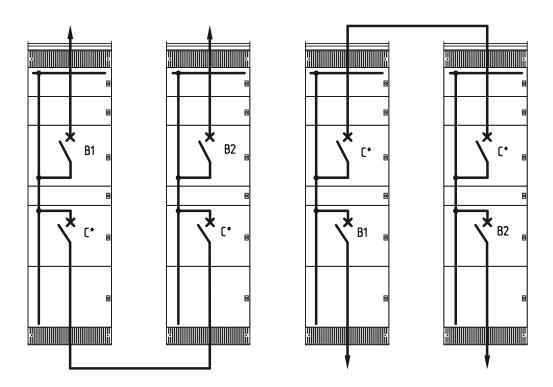


Рис. 6.28. Шкаф 2ШВС при двухрядной схеме КТП

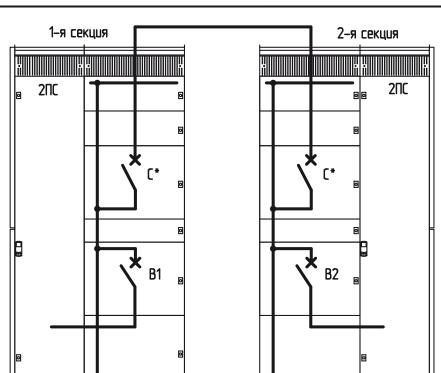


Рис. 6.29. Шкаф 2ШВС при подводе питания от панели стыковки

* Примечание: один из аппаратов выполняет роль секционного выключателя, второй аппарат является выключателем нагрузки, который должен быть постоянно включен в нормальном режиме работы и служит для создания видимого разрыва при проведении ремонтных работ.

Примеры компоновок КТП со строительной частью – смотрите приложение Д.

6.5 ОПИСАНИЕ РАБОТЫ

Схемы вспомогательных цепей РУНН выполнены на переменном оперативном токе и могут выполняться:

- а) на базе электромеханических реле, для однотрансформаторных КТП и двухтрансформаторных без аварийных вводов;
- б) на базе программируемого логического контроллера (типа ZELIO если к КТП не предъявляются требования по телемеханике или TWIDO при наличии) для однотрансформаторных и двухтрансформаторных КТП всех типов и предусматривают:
 - сигнализацию повышения давления в баке силового трансформатора;
- сигнализацию повышения температуры в баке силового трансформатора мощностью 1000 кВ·А; 1600 кВ·А;
- автоматический ввод резерва с автоматическим восстановлением схемы нормального режима;
 - учет активной и реактивной энергии (по требованию заказчика);
 - наличие на шкафах ввода амперметров и вольтметра.

КТП может обеспечивать прием и выдачу следующих сигналов телемеханики: управление вводными и секционными выключателями, положение вводных выключателей, наличие напряжения на вводах и на секции, неисправность, положение ключа ABP.

Перечень требуемых сигналов необходимо указывать при заказе.

В стандартном исполнении из шкафов РУНН могут быть собраны следующие схемы силовых цепей:

схема № 1 – один ввод, одна секция;

схема № 2 – один рабочий ввод, один аварийный ввод, одна секция;

схема № 3 – два рабочих ввода, две секции с секционным выключателем;

схема № 4 – два рабочих ввода, две секции с секционным выключателем, аварийный ввод на одну из секций.

Примеры схем силовых цепей КТП приведены в Приложении Г.

В качестве рабочего источника используется силовой трансформатор, резервного – автономная дизельная электростанция (ДЭС).

Для каждой из силовых схем существует стандартный алгоритм работы.

6.5.1 Схема № 1.

Применяется для неответственных потребителей. АВР отсутствует.

6.5.2 Схема № 2.

В КТП предусмотрено автоматическое включение резервного источника питания – ДЭС, выполненное на выключателе аварийного ввода (ABP) с автоматическим восстановлением схемы нормального режима после срабатывания ABP (ABHP).

Включение/отключение режима АВР осуществляется переключателем, установленным на двери шкафа.

В нормальном режиме питание потребителей осуществляется от рабочего источника – трансформатора, при снижении напряжения на рабочем вводе (хотя бы в одной фазе) ниже уставки UABP с выдержкой времени подается команда на запуск ДЭС. После пуска ДЭС, о чем свидетельствует появление напряжения на аварийном вводе, отключается выключатель рабочего ввода, после чего включается выключатель аварийного ввода, таким образом, питание потребителей переводится на аварийный источник — ДЭС. При восстановлении напряжения на рабочем вводе с выдержкой времени подается команда на останов ДЭС, отключа-

ется выключатель аварийного ввода, после чего включается выключатель рабочего ввода, в результате чего питание потребителей переводится на рабочий источник.

6.5.3 Схема № 3.

В КТП предусмотрено автоматическое включение резервного источника питания, выполненное на секционном выключателе (АВР) с автоматическим восстановлением схемы нормального режима после срабатывания АВР (АВНР):

а) в нормальном режиме выключатели ввода включены, секционный выключатель отключен, каждый трансформатор питает соответствующую секцию. Включение/отключение режима ABP осуществляется переключателем, установленным на двери шкафа.

Пуск ABP происходит при снижении напряжения на вводе (хотя бы в одной фазе) ниже уставки UABP, при условии, что выключатель другого ввода включен, и режим ABP включен.

Через интервал выдержки времени на срабатывание ABP (далее по тексту – TABP) подается команда на отключение выключателя ввода. После получения сигнала об отключенном состоянии выключателя ввода подается команда на включение секционного выключателя, таким образом, обесточенная секция переводится на резервное питание от второго ввода. При этом обеспечивается однократность действия ABP.

При аварийном отключении вводного выключателя действие АВР блокируется;

б) после перевода одной из секций на резервное питание от другой секции выключатель ввода на данную секцию отключен, выключатель ввода другой секции и секционный выключатель включены.

Пуск АВНР происходит при восстановлении напряжения на вводе более уставки UAВНР (во всех фазах одновременно) при условии, что выключатель данного ввода отключен, секционный выключатель включен, режим АВР включен. Через интервал времени ТАВНР подается команда на отключение секционного выключателя. После получения сигнала об отключенном состоянии секционного выключателя подается команда на включение вводного выключателя, таким образом, формируется схема нормального режима КТП.

Команда на отключение секционного выключателя во включенном режиме ABP подается при одновременном включении выключателей обоих вводов по любой причине, в том числе и оператором, что позволяет исключить параллельную работу трансформаторов.

6.5.4 Схема №4.

В КТП предусмотрено автоматическое включение резервного источника питания, выполненное на секционном выключателе (ABP CB) с автоматическим восстановлением схемы нормального режима после срабатывания ABP CB (ABHP CB):

а) в нормальном режиме выключатели ввода включены, секционный выключатель и выключатель аварийного ввода отключены, каждый трансформатор питает соответствующую секцию. Включение/отключение режима АВР СВ осуществляется переключателем, установленным на двери шкафа.

Пуск ABP CB происходит при снижении напряжения на вводе (хотя бы в одной фазе) ниже уставки UABP CB, при условии, что выключатель другого ввода включен и режим ABP CB включен.

Через интервал выдержки времени на срабатывание ABP CB (далее по тексту — TABP CB) подается команда на отключение выключателя ввода. После получения сигнала об отключенном состоянии выключателя ввода подается команда на включение секционного выключателя, таким образом, обесточенная секция переводится на резервное питание от второго ввода. При этом обеспечивается однократность действия ABP CB.

При аварийном отключении вводного выключателя действие АВР СВ блокируется;

б) после перевода одной из секций на резервное питание от другой секции выключатель ввода на данную секцию отключен, выключатель ввода другой секции и секционный выключатель включены, выключатель аварийного ввода остается при этом все время отключенным.

Пуск АВНР СВ происходит при восстановлении напряжения на вводе более уставки UABHP СВ (во всех фазах одновременно) при условии, что выключатель данного ввода отключен, секционный выключатель включен, режим АВР СВ включен. Через интервал времени ТАВНР СВ подается команда на отключение секционного выключателя. После получения сигнала об отключенном состоянии секционного выключателя подается команда на включение вводного выключателя, таким образом формируется схема нормального режима КТП.

Команда на отключение секционного выключателя во включенном режиме ABP CB подается при одновременном включении выключателей обоих вводов по любой причине, в том числе и оператором, что позволяет исключить параллельную работу трансформаторов;

в) в КТП также предусмотрено автоматическое включение резервного источника питания, выполненное на аварийном вводе (ABP AB) с автоматическим восстановлением схемы нормального режима после срабатывания ABP AB (ABHP AB).

В нормальном режиме выключатели ввода включены, секционный выключатель и выключатель аварийного ввода отключены, каждый трансформатор питает соответствующую секцию. Включение/отключение режима АВР АВ осуществляется переключателем, установленным на двери шкафа.

Пуск ABP AB происходит при снижении напряжения на обоих рабочих вводах (хотя бы в одной фазе) ниже уставок UABP AB1 и UABP AB2, при условии, что режим ABP AB включен и нет сигналов блокировки ABP AB.

Через интервал выдержки времени на срабатывание ABP AB (далее по тексту – TABP AB) подается команда на запуск ДЭС. После запуска ДЭС, свидетельством чего является появление напряжения на аварийном вводе, одновременно подаются команды на отключение выключателей рабочих вводов № 1 и № 2.

После получения сигнала об отключенном положении выключателей рабочих вводов №1 и №2 и отсутствии сигналов блокировки ABP подаются команды на включение секционного выключателя и выключателя аварийного ввода, таким образом, обесточенные секции переводятся на резервное питание от аварийного ввода (ДЭС).

После срабатывания ABP AB обе секции питаются от AC через включенные выключатели аварийного ввода и секционный, выключатели рабочих вводов № 1 и № 2 отключены;

- г) пуск АВНР АВ происходит при восстановлении напряжения на одном из рабочих вводов более уставки UABHP АВ (во всех фазах одновременно) при условии, что выключатели рабочих вводов отключены, выключатель аварийного ввода включен, режим АВР АВ включен. Через интервал выдержки времени на срабатывание АВНР АВ (далее по тексту ТАВНР АВ) подается команда на останов ДЭС и команда на отключение выключателя аварийного ввода. После получения сигнала об отключенном положении выключателя аварийного ввода подается команда на включение выключателя того рабочего ввода, где восстановилось напряжение, вне зависимости от того, есть ли напряжение на аварийном вводе. Далее при восстановлении напряжения на другом рабочем вводе отрабатывается алгоритм АВНР СВ, таким образом, формируется схема нормального режима КТП;
- д) пуск ABHP AB происходит также при одновременном восстановлении напряжения на обоих рабочих вводах более уставки UABHP AB (во всех фазах одновременно) при условии, что выключатели рабочих вводов отключены, выключатель аварийного ввода включен, режим ABP AB включен. Через интервал выдержки времени на срабатывание ABHP AB (далее по тексту TABHP AB) подается команда на останов ДЭС и команда на отключение выключателя аварийного ввода. После получения сигнала об отключенном положении выключателя аварийного ввода подаются команды на включение выключателей рабочих вводов и

отключение секционного выключателя, вне зависимости от того, есть ли напряжение на аварийном вводе; таким образом, формируется схема нормального режима КТП.

В зависимости от требований заказчика алгоритм работы АВР может быть иной.

7. УСЛОВИЯ ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

Условия транспортирования и хранения КТП и допустимые сроки хранения до ввода в эксплуатацию указаны в таблице 7.1.

Таблица 7.1. Условия транспортирования и хранения

		вий транспортиро- и воздействия	Обозначение	Средний срок сохраняемости
Вид поставки	Механических факторов по ГОСТ 23216-78	Климатических факторов по ГОСТ 15150-69	условий хранения по ГОСТ 15150-69	в упаковке из- готовителя (год)
1. В районы с умеренным климатом (кроме районов по ГОСТ 15846-2002)	Л	8 (OЖ3)	1 (Л)	1
2. В районы Крайнего севера и труднодоступные по ГОСТ 15846-2002	Ж	(EЖO) 8	2 (C)	1
3. Экспортные в макроклиматические районы с умеренным климатом	Л	8 (CЖO) 8	1 (Л)	1,5

8. КОМПЛЕКТНОСТЬ ПОСТАВКИ

В комплект поставки входят:

- комплектная трансформаторная подстанция;
- грузоподъемная тележка для автоматических выключателей (по заказу);
- запасные части в соответствии с ведомостью ЗИП;
- техническая документация (принципиальные и монтажные схемы шкафов, габаритные чертежи);
 - паспорт.

9. ФОРМУЛИРОВАНИЕ ЗАКАЗА

Для заказа КТП необходимо указать:

- типоисполнение изделия;
- обозначение технических условий.

Пример записи обозначения при заказе КТПСП с одним трансформатором мощностью 1000 кВ·А, при поставке в район с умеренным климатом:

"КТПСП-ОККЕN-1000/10/0,4-2009-У3, ТУ16.530.191-77".

Дополнительно необходимо представить:

- опросный лист с указанием технических характеристик КТП, в том числе уставок автоматических выключателей РУНН;
 - опросный лист и спецификацию на счетчики электрической энергии.

Форма опросного листа приведена в таблицах 9.1, 9.2. Пример заполнения опросного листа — смотрите приложение Е. Опросный лист на силовые трансформаторы — смотрите приложение Ж.

Таблица 9.1. Форма опросного листа

O6	щие технические требования и св	едения
	тактная информация проектной	
организации	1 1	
Наименование объекта, ку	уда поставляется оборудование	
Заказываемое к поставке о	оборудование	
	однорядная	
Компоновка	двухрядная	
	(расстояние между фасадами)	
Система заземления		
Ta 1	масляный	
Трансформатор силовой	сухой	7
Количество трансформато	рров	
Напряжение и род тока	220 В постоянного	
цепей управления	220 В, 50 Гц	7
T	одностороннее	
Тип обслуживания	двухстороннее	7
Вид разделения огражден	иями и перегородками	
Высота шкафов РУНН, мм	A .	
Степень защиты шкафов І		
Исполнение шкафов РУН		

Таблица 9.2. Форма опросного листа

		•
Схема главных цепей		
Тип шкафа, панели		
Номер панели в щите		
Номер фидера в шкафу О.Л.	Л.	
Подвод кабеля к шкафу	К↑ - снизу	
или фидеру	K↓ - cBepxy	
Расчетный ток фидера, А		
	Тип	
	Номинальный ток, А	
	Ток расцепителя, А	
Выключатель	Тип расцепителя	
	Тип привода	
	Исполнение по установке	
	Независимый расцепитель	
	Трансформаторы тока	
тиодина от на правической	Амперметр	
rismeparenthine upacopar	Вольтметр	
	Счетчик	
Тип подключаемого кабеля		
Табличка на двери (наименование потребителя)	нование потребителя)	

При заполнении опросного листа необходимо руководствоваться данной технической информацией. Обязательным приложением являются однолинейная схема и схема компоновки РУНН.

ПРИЛОЖЕНИЕ А МЕСТА КРЕПЛЕНИЯ ШКАФА К ПОЛУ

(справочное)

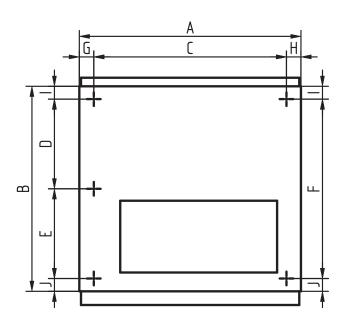


Рис. А.1. Крепление шкафа к полу

Таблица А.1. Крепление шкафа к полу

A	В	С	D	Е	F	G	Н
650	600	565	262,5	262,5		42,5	37,5
650	400	565			325	42,5	37,5
450	600	365	262,5	262,5		42,5	37,5
450	400	365			325	42,5	37,5
350	600	265	262,5	262,5		42,5	37,5
350	400	265			325	42,5	37,5
250	600	165	262,5	262,5		42,5	37,5
250	400	165			325	42,5	37,5

ПРИЛОЖЕНИЕ Б ПРОЕМЫ ДЛЯ ПОДВОДА КАБЕЛЕЙ

(справочное)

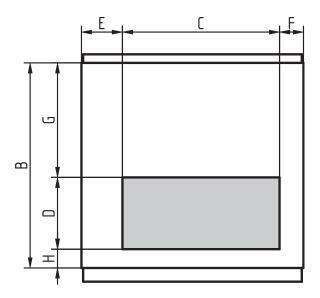


Рис. Б.1. Проемы для подвода кабелей

Таблица Б.1. Ввод кабелей снизу

A	В	С	D	Е	F	G	Н
		Шка	ф вводных	выключат	елей		
650	600	450	170	140	60	355	75
		П	Ікаф отход	ящих лини	ій		
650	600	530	240	60	60	340	20
			Кабельн	ый отсек			
650	600	530	560	60	60	20	20
650	400	530	360	60	60	20	20
450	600	330	560	60	60	20	20
450	400	330	360	60	60	20	20
350	600	230	560	60	60	20	20
350	400	230	360	60	60	20	20
250	600	130	560	60	60	20	20
250	400	130	360	60	60	20	20

Таблица Б.2. Ввод кабелей сверху в отсеки без сборных шин

A	В	С	D	Е	F	G	Н
			Кабельн	ый отсек			
650	600	570	560	40	40	20	20
650	400	570	360	40	40	20	20
450	600	370	560	40	40	20	20
450	400	370	360	40	40	20	20
350	600	270	560	40	40	20	20
350	400	270	360	40	40	20	20
250	600	170	560	40	40	20	20
250	400	170	360	40	40	20	20

Таблица Б.3. Ввод кабелей сверху в ячейки и отсеки со сборными шинами

A	В	С	D	Е	F	G	Н
		Шка	ф вводных	выключат	елей		
650	600	460	210	120	70	335	55
		П	Ікаф отход	ящих лини	ій		
650	600	290	200	110	250	360	40
			Кабельн	ый отсек			
650	600	570	260	40	40	320	20
450	600	370	260	40	40	320	20
350	600	270	260	40	40	320	20
250	600	170	260	40	40	320	20

ПРИЛОЖЕНИЕ В ТАБЛИЦЫ МОДУЛЕЙ

(справочное)

Таблица В.1. Таблица модулей для отходящих линий и распределительных систем

		iga ziri i acimiga	tacanda in tacanda mojaca car carconque, mana a pacip commercane cacana		a pacificación	
			Способ устано	Способ установки функционального блока	тьного блока	
Отходящие линии питания и	Тип присоеди-	Выкатной на	Съемный и	В выприжиом	Стационар-	Отсоединя-
распределительные системы	нения	DBINATHON HA	отсоединя-	и рыдымыным	ный и съем-	емый на
		Шасси	емый с Polyfast	ящикс	ный на плате	планке
NW08-40/NT16/NS1600	BDC H2350	38 модулей				
NW08-40/NT16/NS1600	BDC H2200	32 модуля				
NT16/NS1600 комбиниро- ванный с ФБ ≤630 A	RC	18 модулей				
NT16/NS1600 комбиниро- ванный с ФБ ≤630 A	SC-TDC-BDC	30 модулей				
NS250 3P	RC- SC		5-6 модулей	6 модулей	6 модулей	
NS250 3P VIGI	RC-SC					
2NS250 3P 6e3 VIGI	RC-SC				6 модулей	
NS250 4P	RC- SC		7 модулей	8 модулей	8 модулей	
NS250 4P VIGI	RC-SC				8 модулей	
2NS250 4P 6e ₃ VIGI	RC-SC				8 модулей	
NS630 3P	RC-SC		8 модулей	12 модулей	8 модулей	
NS630 3P VIGI	RC-SC				8 модулей	
NS630 4P	RC-SC		9 модулей	12 модулей	10 модулей	
NS630 4P VIGI	RC-SC				10 модулей	
Multi 9	RC-SC			6 мод. 1/2 ш		2-4 модуля

ТDС – прямое присоединение сверху.

ВDС – прямое присоединение снизу.

SC – боковое присоединение. RC – заднее присоединение.

Таблица В.2. Таблица модулей для отходящих линий управления электродвигателем

Отходящие линии управления электродвига-	Мощность, кВт	Способ установки фу	Способ установки функционального блока
телем	400 B	В выдвижном ящике*	Отсоединяемый на планке*
Встроенные GV2P (без тепл. реле)	11	3 модуля 1/2 Ш	2 модуля
Встроенные GV2L без конт. сигнал. поврежд.	11	6 модулей 1/2 III	2 модуля
Встроенные GV2L с конт. сигнал. пврежд.	11	6 модулей 1/2 Ш	4 модуля
		3 модуля 1/2 Ш	
Tesys U	15	3 модуля	2 модуля
		4 модуля с мех. блокир.	
Встроенные NS80	7,5	6 модулей 1/2 Ш	
Встроенные NS80	22	6 модулей 1/2 Ш	
Встроенные NS80	30		4 модуля
Встроенные NS80	37	6 модулей	
Встроенные NS100	37	6 модулей	
Встроенные NS160	75	6 модулей	
Встроенные NS250	110	12 модулей	
Встроенные NS400	160	18 модулей	
Встроенные NS630	250	18 модулей	
Встроенные GS1	15	6 модулей 1/2 III	
Встроенные GS1	22	6 модулей 1/2 III	
Встроенные GS1	37	6 модулей	
Встроенные GS1	110	12 модулей	
Встроенные GS1	220	24 модуля	

*Примечание: количество модулей указано для схемы прямого пуска нереверсивного односкоростного электродвигагеля. По вопросам применения других схем управления и пуска электродвигателя (реверсивное, двухскоростное, звездатреугольник, схема Даландера) обращайтесь в УП "МЭТЗ им. В.И. Козлова"

ПРИЛОЖЕНИЕ Г СХЕМЫ СИЛОВЫХ ЦЕПЕЙ КТПСП-ОККЕN

(справочное)

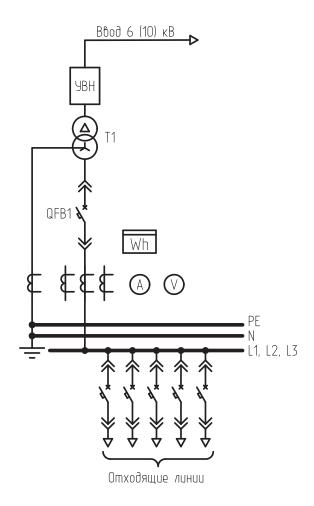


Рис. Г.1. Схема №1 (один ввод, одна секция)

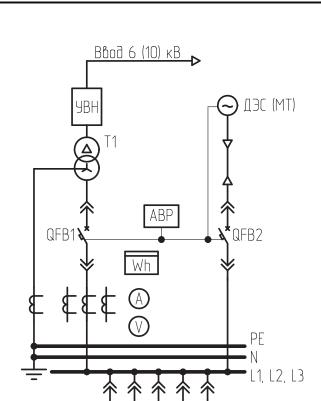


Рис. Г.2. Схема №2 (один рабочий ввод, один аварийный ввод, одна секция)

Отходящие линии

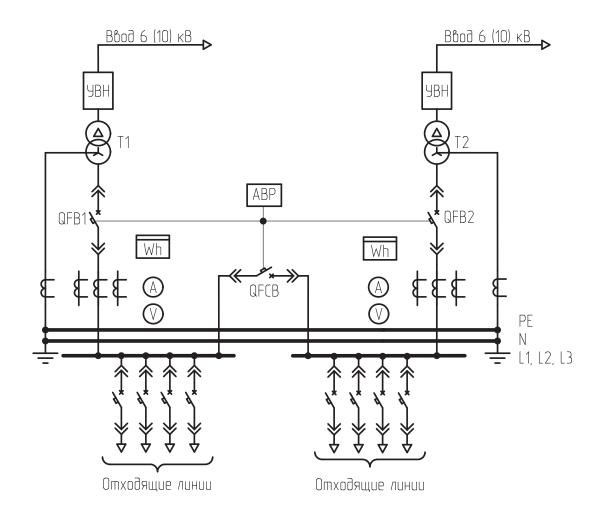


Рис. Г.З. Схема №3 (два рабочих ввода, две секции с секционным выключателем)

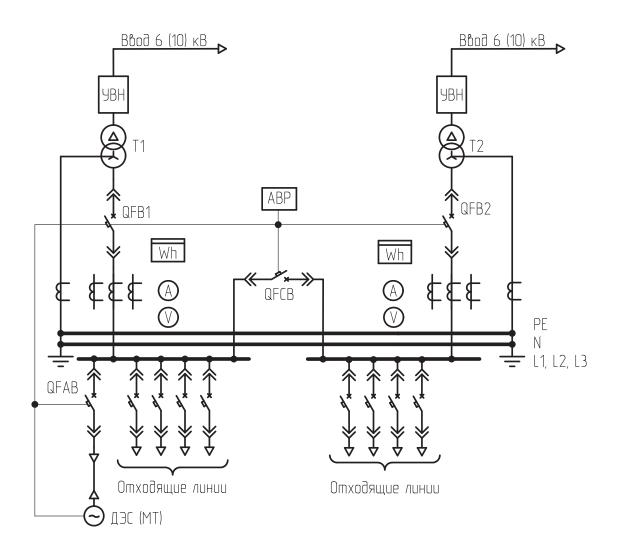
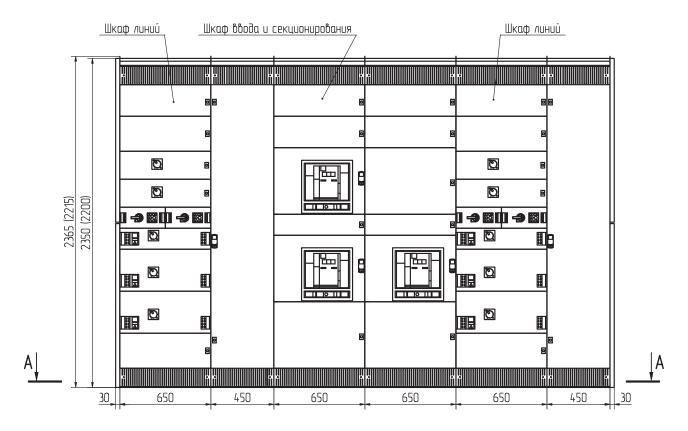



Рис. Г.4. Схема №4 (два рабочих ввода, две секции с секционным выключателем, аварийный ввод на одну из секций)

ПРИЛОЖЕНИЕ Д КОМПОНОВКИ ЩИТА

(справочное)

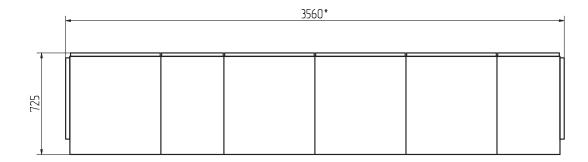
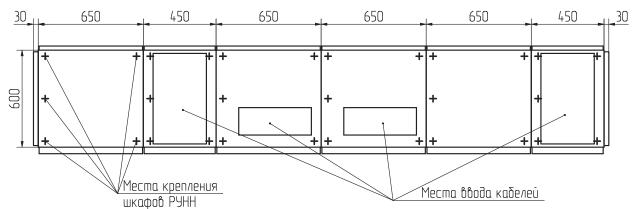



Рис. Д.1. КТПСП-ОККЕ одностороннего обслуживания

Продолжение рисунка Д.

A–A Установочные размеры КТП и места ввода кабелей

- $1)^*$ Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для КТП с двумя шкафами линий.
- 2) Размеры отверстий для крепления шкафов к полу смотрите приложение А.
 - 3) Размеры мест подвода кабелей смотрите приложение Б.

Таблица Д.1.1

Насивнение птефе	Тин шкафа	Тип выключателя на	Тин отголиний	Масса шкафа,
иаэпатана шлафа	ı nıı madya	вводе		кг, (средняя)
Шкаф ввода и	Jaiii	Masterpact NW32,		059
секционирования		Masterpact NT16		000
			Masterpact NT16 (Compact NS16) – до 2 шт.	
Шкаф линий	111111		Compact NS 100-630 A – до 14 шт.	059
			Блоки управления электродвигателем – до 48 шт.	

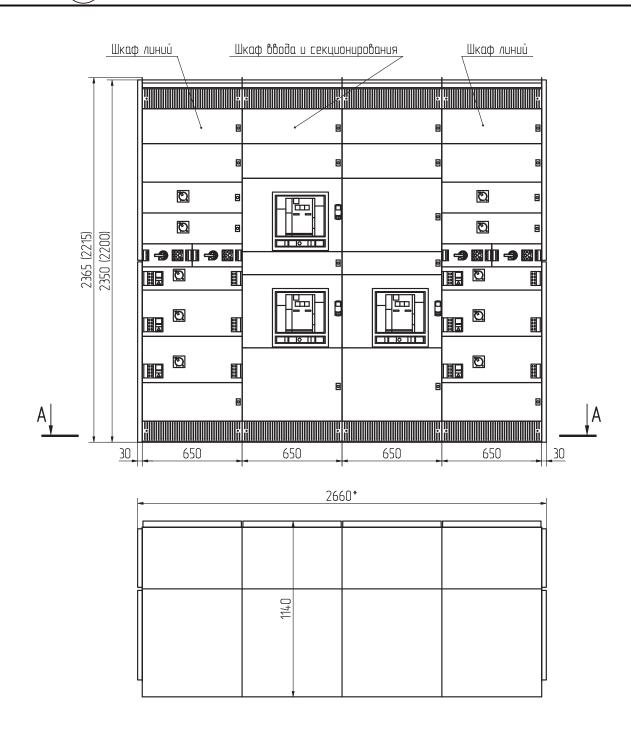
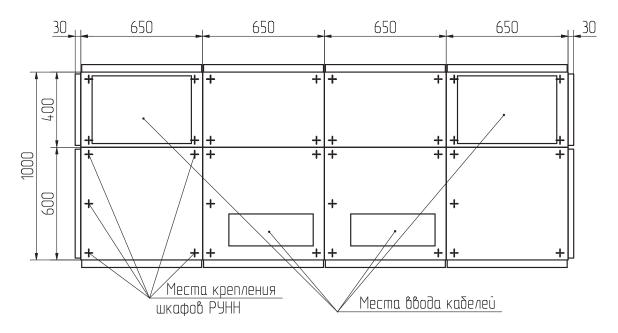



Рис. Д.2. КТПСП-ОККЕ двухстороннего обслуживания

Продолжение рисунка Д.2

A-A Установочные размеры КТП и места ввода кабелей

- $1)^*$ Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для КТП с двумя шкафами линий.
- 2) Размеры отверстий для крепления шкафов к полу смотрите приложение ${\bf A}.$
 - 3) Размеры мест подвода кабелей смотрите приложение Б.

Таблица Д.2.1

		Тип выклюпателя на		Масса шкафа
Назнацение птема Тип птема	Тип пткафа	I MIL BEIMING THE COM THE	Тин отхонений	ivideed madpa,
Tiasila iciliic muadha		вводе		кг, (средняя)
Шкаф ввода и	Jamic	Masterpact NW32,		059
секционирования	ZIIIDC	Masterpact NT16		020
			Masterpact NT16 (Compact NS16) – до 3 шт.	
Шкаф линий	2ШЛ		Compact NS 100-630 A – до 14 шт.	929
			Блоки управления электродвигателем – до 48 шт.	

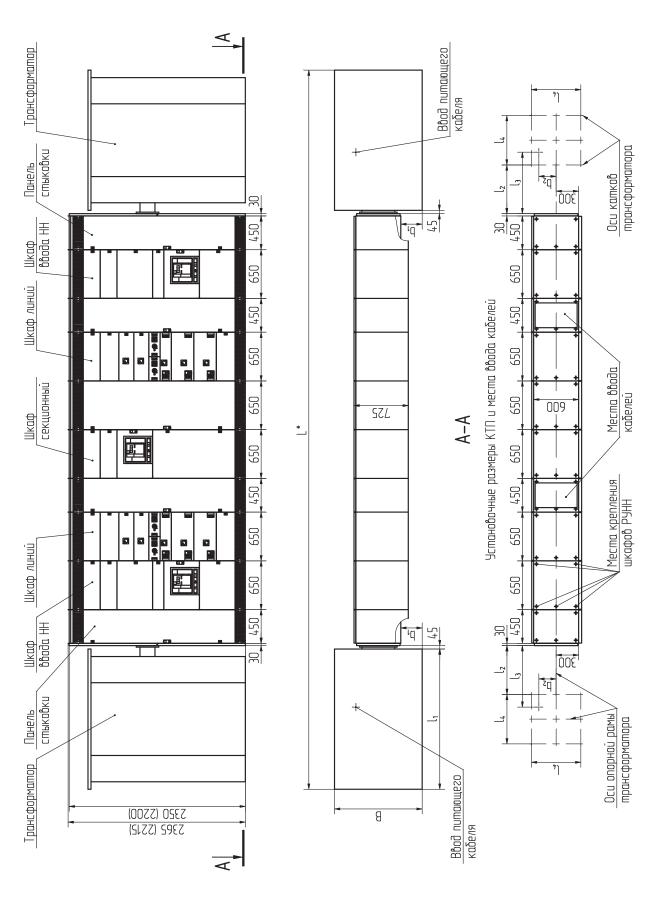
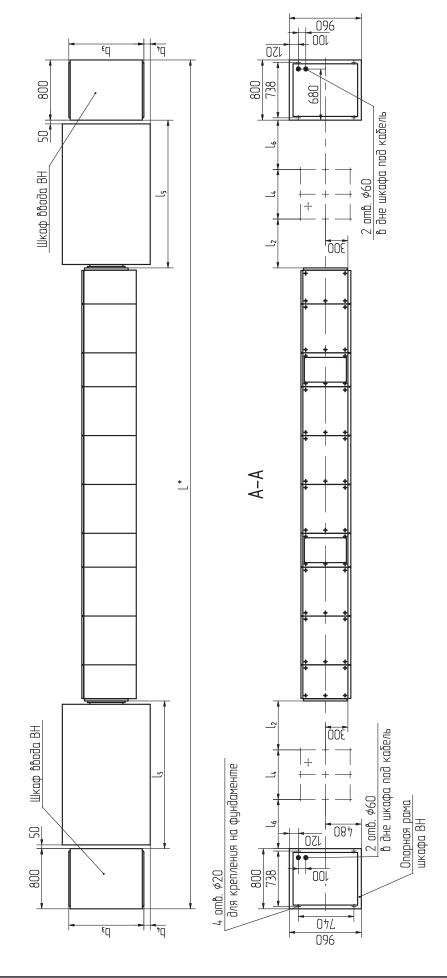



Рис. Д.З. Однорядная КТПСП-ОККЕN одностороннего обслуживания с трансформатором ТСЗГЛ

1) Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий.

2) Размеры отверстий для крепления шкафов к полу – смотрите приложение А.

3) Размеры мест подвода кабелей – смотрите приложение Б.

Продолжение рисунка Д.3

Габлица Д.З.1

Macca Macca	rnanchon- KTHCH
тизисфон-	b ₄
b_3 b_4	
11 b2	
B b ₁	
ls 16	
-	I4
	13
	12
	l_1
*	Т
-	шкафа ВН
OTTOGET TIXE	форматора

Габлица Д.3.2

Назначение шкафа	Тип шкафа	Тип выключателя на вводе	Тип отходящих линий	Масса шкафа, кг, (средняя)
Drog DII		глухой ввод		
БВОД БП	IIIB3	BH-10/400-16 ₃ -10У3		300
Панель стыковки	ЭШΙ			300
Шкаф ввода	1IIIB	Masterpact NW32, Masterpact NT16		959
Шкаф линий	ІШ1		Маsterpact NT16 (Compact NS16) — до 2 шт. Compact NS $100-630 \text{ A}$ — до 14 шт . Блоки управления электродвигателем — до 48 шт .	059
Шкаф секционный	1IIIC	Masterpact NW32, Masterpact NT16		650

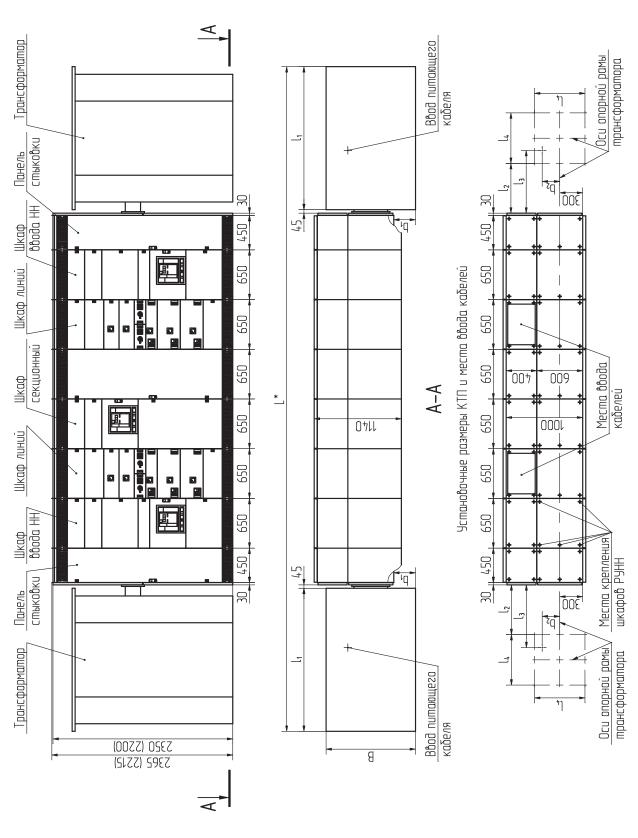
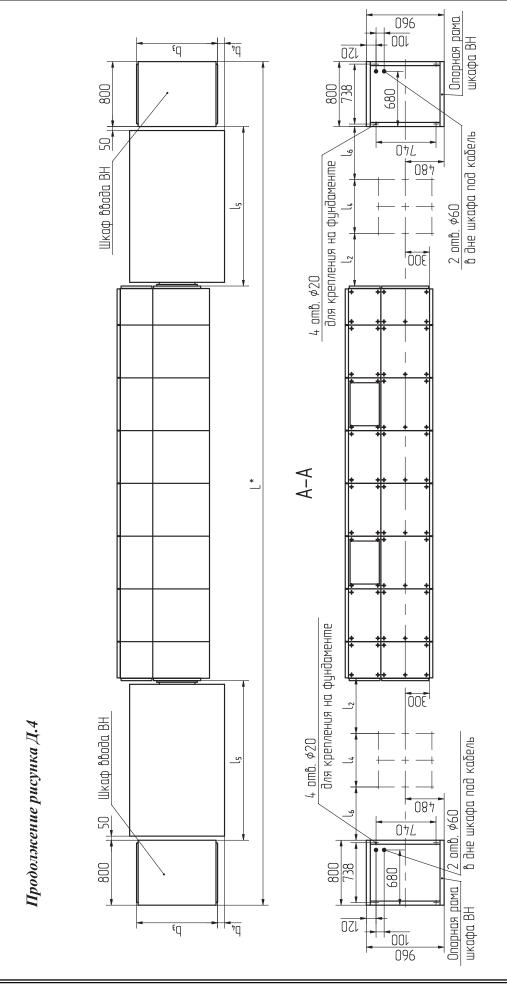



Рис. Д.4. Однорядная КТПСП-ОККЕN двухстороннего обслуживания с трансформатором ТСЗГЛ

Tа6лица Д.4.I

	Тип						Размеры, мм	MM ,I						Macca	Macca
тип транс- форматора	шкафа ВН	*7	l_1	12	13	14	15	1_6	В	b_1	b ₂	b ₃	b ₄	трансфор-	КТПСП,
	חות	(maropa, m	MI
TC3LH_250		8250	1650	240	870	099			1050	200	700			1350	6550
1001	IIIB-3	9950	0001	2+	0/0	000	1745	545		777	200	1000	25	0001	7150
TC2FH 400		8250	1650 540	240	028	099			1050	375	400			1705	7260
1031 31-400	IIIB-3	9950	1000	040	0/0	000	1745	545	1050		400	1000	25	1703	0982
TC9FT 630		8410	1720	200	010	000			1160	000	160			2180	8210
1531 31-030	IIIB-3	10110		000	710	070	1825	505	1100	700	400	1000	80	7100	8810
TC3FH 1000		0206	0900	730	1140	000			1160	086	160			3150	10150
1001-11-1000	IIIB-3	10770	7007	06/	1140	070	2155	605	1100	700	400	1000	80	0010	10750
TC2FH 1250		0206	022 0900	730	1140	000			1160	Uac	160			3550	10950
1031-11-1001	IIIB-3	10770	7000	06/	1140		2155	605	1100	700	400	1000	80	0000	11550
ТСЗГЛ-1600	IIIB-3	11200	11200 2275 845	845	1255	820	2370	705	1160	280	460	1000	80	3660	11770

Таблица Д.4.2

Гип выключателя на Вводе Тип отходящих линий
глухой ввод
BH-10/400-16 ₃ -10У3
Masterpact NW32,
Masterpact NT16
Masterpact NT16 (Compact NS16) – до 3 шт.
— Compact NS 100 – 630 A – до 14 шт.
Блоки управления электродвигателем – до 48 шт.
Masterpact NW32,
Masterpact NT16

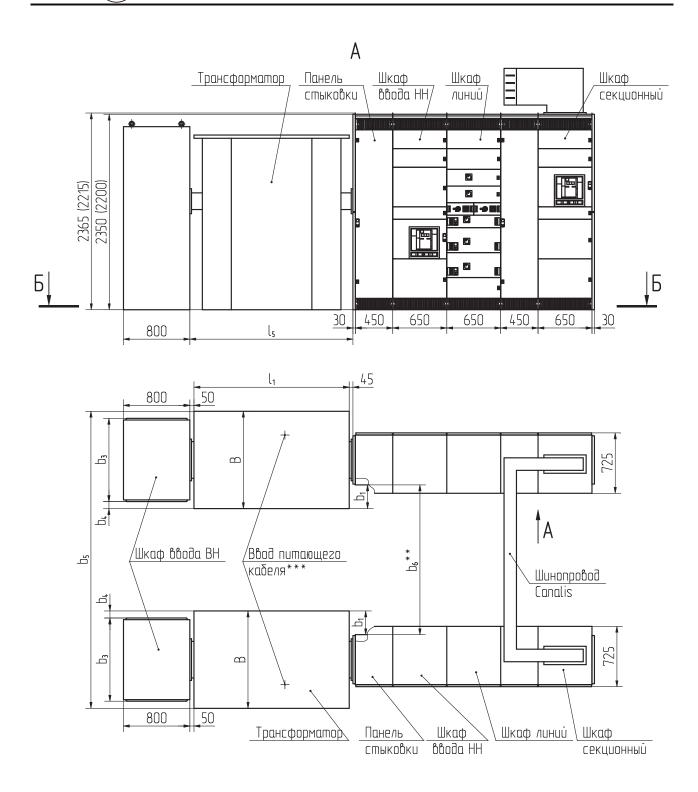
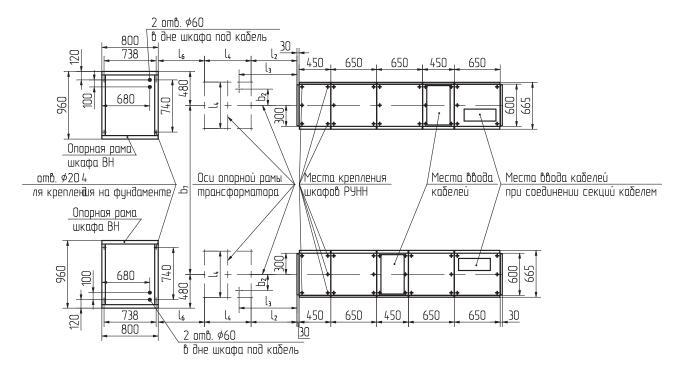



Рис. Д.5. Двухрядная КТПСП-ОККЕN одностороннего обслуживания с трансформатором ТСЗГЛ

Продолжение рисунка Д.5

Б–Б Установочные размеры КТП и места ввода кабелей

- 1)* Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий.
- 2)** Допускается изготовление КТП с расстоянием между фасадами секций РУНН отличных от указанного.
- 3)*** Место ввода питающего кабеля в силовой трансформатор при отсутствии шкафа высоковольтного ввода.
- 4) Размеры отверстий для крепления шкафов к полу смотрите приложение А.
 - 5) Размеры мест подвода кабелей смотрите приложение Б.
- 6) Допускается изготовление КТП с расположением силовых трансформаторов справа от шинной перемычки.
- 7) Высота КТП с шинопроводом Canalis определяется размерами выбранных секций шинопровода.

		1	ı .	1									
	Масса КТПСП, кг	6550	7150	7260	0982	8210	8810	10150	10750	10950	11550	11770	11//0
Macca	транс- форма- тора, кг	1250	1530	1705	0/1	2100	7100	2150	0010	2550	0000	0998	2000
	,* cq	0070	7400	0076	7400	0000	7300	0000	7200	0000	7300	0000	7200
	${\rm b_6}^{**}$	1000	3430 1800		3430 1000	0026	4000	0026	4000		4000 2300	1060 7300	7300
	b ₅ **	2150	2420	2150	2420	0901	4000	7060	4000	4060	4000	4060	4000
	b ₄		25		25		80		80		80	00	00
	b ₃		1000		1000		1000		1000		1000	1000	1000
	b ₂	400	004	007	004	091	004	091	400	031	400	091	400
IM	b_1	375	C77		777	000	700	000	707	000	700	080	700
Размеры, мм	В	1050	0001	1050	0001		1100	1160	1100	1160	1100	705 11160 280	1100
Pası	16		545		545		505		909		605		
	15		1745		1745		1825		2155		2155	2370	0/67
	14	099 02		033	000	000	070	UCO	070	UCO	070	UCS	070
	13	870		870		910		1140		1140		1255	1233
	12	240	240	240	240	6 009		730 111		730 11		915	C+0
	1_1	1650	0001	1650	0001	1730	1 / 30		7007	0300		2775	C / 77
	*ப	4605	5455	4605	5455	4685	5535	5015	5865	5015	5865	31/8 3777 0803	0000
	Тип шкафа ВН		IIIB-3		IIIB-3		IIIB-3		IIIB-3		IIIB-3	IIID 2	
	транс- форма- тора	ТСЗГЛ	-250	ТСЗГЛ	-400	ТСЗГЛ	-630	ТСЗГЛ	-1000	ТСЗГЛ	-1250	ТСЗГЛ	-1600

Таблица Д.5.2

 Назначение шкафа Тип шкафа	Тип выключателя на	Тип отходящих линий	Масса шкафа,
,	вводе		кг, (средняя)
	глухой ввод		
IIIB3	BH-10/400-16 ₃ -10У3		300
1IIC			300
111112	Masterpact NW32,		059
om i	Masterpact NT16		000
		Masterpact NT16 (Compact NS16) – до 2 шт.	
111111		Compact NS 100 – 630 A – до 14 шт.	959
		Блоки управления электродвигателем – до 48 шт.	
1111	Masterpact NW32,		039
	Masterpact NT16		000

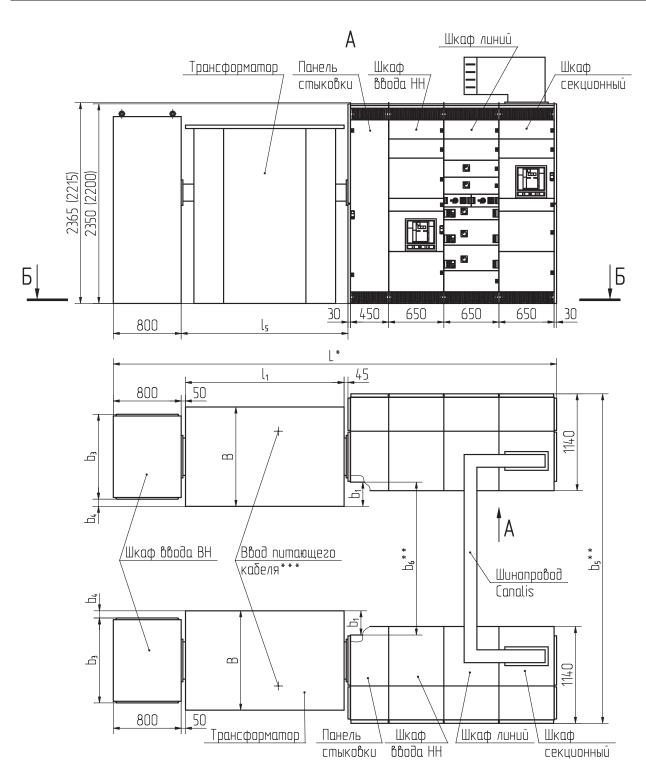
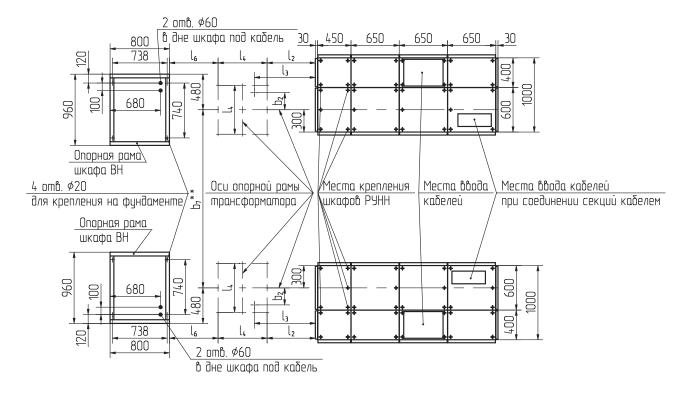
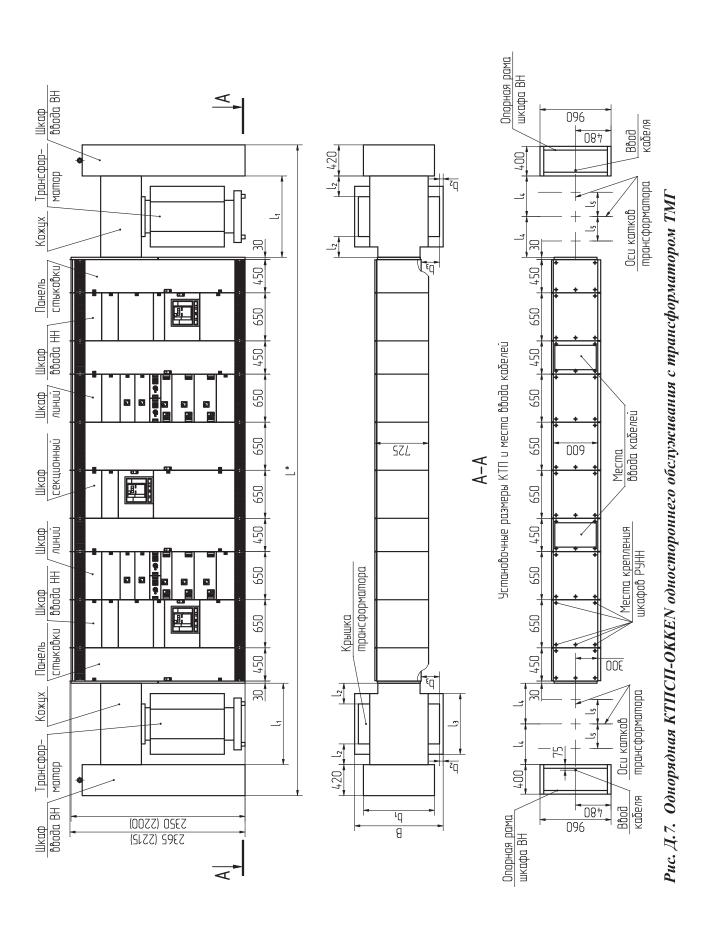



Рис. Д.6. Двухрядная КТПСП-ОККЕN двухстороннего обслуживания с трансформатором ТСЗГЛ

Продолжение рисунка Д.6

Б–Б Установочные размеры КТП и места ввода кабелей

- 1) * Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий.
- 2) ** Допускается изготовление КТП с расстоянием между фасадами секций РУНН отличных от указанного.
- 3) *** Место ввода питающего кабеля в силовой трансформатор при отсутствии шкафа высоковольтного ввода.
- 4) Размеры отверстий для крепления шкафов к полу смотрите приложение ${\bf A}.$
 - 5) Размеры мест подвода кабелей смотрите приложение Б.
- 6) Допускается изготовление КТП с расположением силовых трансформаторов справа от шинной перемычки.
- 7) Высота КТП с шинопроводом Canalis определяется размерами выбранных секций шинопровода.



L								Pası	Размеры, мм	M							Macca	
транс- форма- тора	Тип шкафа ВН	*7	1_1	12	13	-1	15	16	В	bı	b ₂	b3	b ₄	b _* *	p [*] *	,* [*] 2q	транс- форма- тора, кг	Масса КТПСП, кг
ТСЗГЛ		4155	1750						+	+	00			0000	1000	2	1350	6550
-250	IIIB-3	5005	001	240	0/8	000	1745	545	001	C77	400	1000	25	2880	1800	7400	1330	7150
ТСЗГЛ		4155	1650	072	020				1050	-	700			0000	1000	0070	1705	7260
-400	IIIB-3	5005	001	240	0/0	000	1745	545	001	C77	400	1000	25	2000	1800	7400	C0/I	0982
ТСЗГЛ		4235	1720	200	010	000					760			1200	_	0000	0100	8210
-630	IIIB-3	5085	06/1	200	910		1825	505	0011	700	1004	1000	80	4300	4300 2300	7900	7100	8810
ТСЗГЛ		4565	0300	720	1140	UCO			1160	000	160			1200	_	0000	2150	10150
-1000	IIIB-3	5415	7007			070	2155	909	1100	700	400	1000	80	4300 2300		70067	0010	10750
ТСЗГЛ		4565	0300	720	11110	UCO					160			1200		0000	2550	10950
-1250	IIIB-3	5415	7000		1140	070	2155	909	1100	700	400	1000	80	4300 2300		70067	2220	11550
ТСЗГЛ	IIIB_3	2630	3200 0895	845	1255	068	0220	50 <i>L</i>	1160	086	097	1000	08	4380	7380	0000	0998	11770
-1600	C-0111	0000	0177) F		070		3	1100			1000		2001	2007	7067	2000	0//11

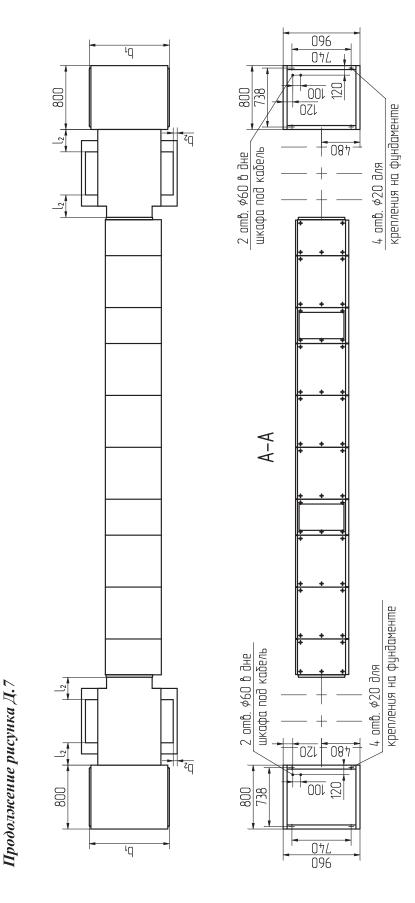


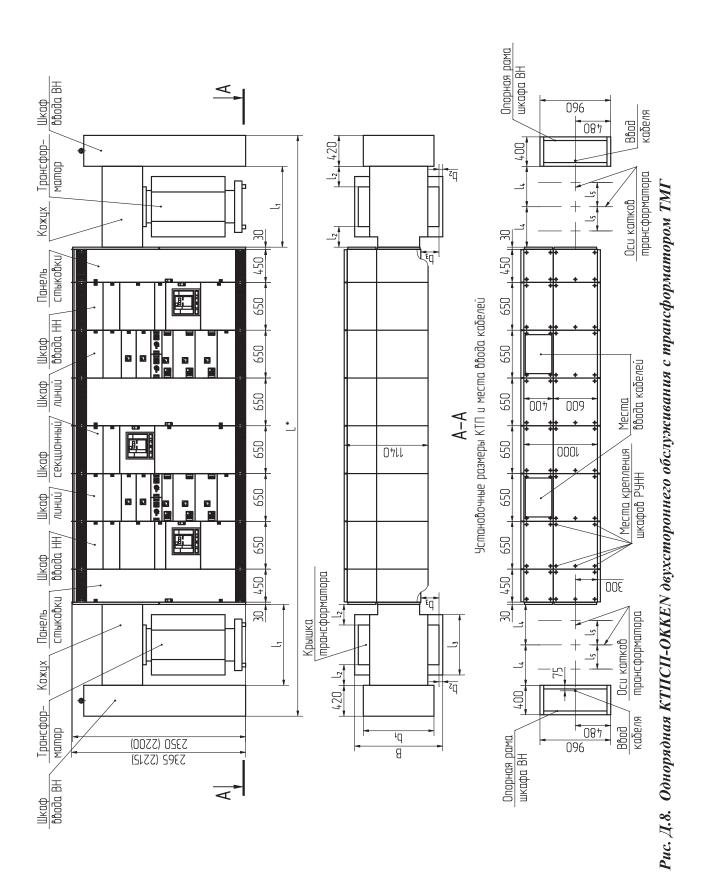
Таблица Д.6.2

(вв							
Масса шкафа, кг, (средняя)		300	300	059	059	959	
Тип отходящих линий					Маsterpact NT16 (Compact NS16) — до 2 шт. Compact NS $100-630 \text{ A} - до 14 \text{ шт}$. Блоки управления электродвигателем — до 48 шт.		
Тип выключателя на вводе	глухой ввод	BH- $10/400-16_3-10$ Y3		Masterpact NW32, Masterpact NT16	l	Masterpact NW32, Masterpact NT16	
Тип шкафа		IIIB3	2ПС	2IIIB	2111.71	2IIIC	
Назначение шкафа	Daon DU	рвод рп	Панель стыковки	Шкаф ввода	Шкаф линий	Шкаф секционный	

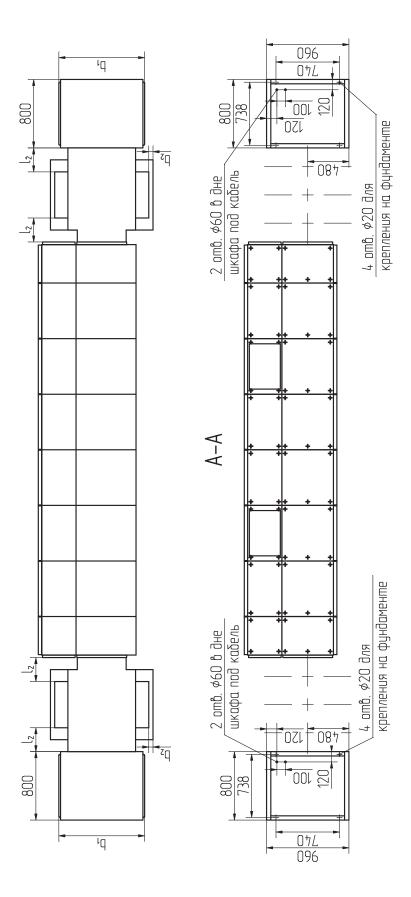
Комплектные трансформаторные подстанции КТПСП мощностью от 160 до 1600 кВ·А на базе конструктива ОККЕN. Техническая информация.

1) * Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий.

- 2) Размеры отверстий для крепления шкафов к полу смотрите приложение А. 3) Размеры мест подвода кабелей смотрите приложение Б.


Таблица Д.7.1

						Размеры, мм	bi, MM					Масса, кг	a, KT	Messes
Тип транс-	Тип шкафа											транс-	B TOM	КТПСП
форматора	ввода ВН	*	1_1	1_2	13	14	15	В	b_1	\mathbf{b}_2	b_3	форма-	числе	KT KT
												тора	масла	2
	IIIB-1	0098							090					6050
TMF11-250	(глухой ввод)	0000	1000	234	820	500	275	1140	200	4	566	920	225	0266
	IIIB-3	0986							1000					6290
	IIIB-1	0000							020					0033
TML11-400	(глухой ввод)	2800	1100	297	855	550	330	1350	900	72	303	1255	325	0700
	IIIB-3	0956							1000					0969
	IIIB-1	0000							090					7030
TMF11-630	(глухой ввод)	0076	1300	359	1000	650	410	1545	200	80	393	1860	450	000/
	IIIB-3	0966							1000					8170
	IIIB-1	0000							090					0610
TMF11-1000	ГМГ11-1000 (глухой ввод)	0076	1300	345	1135	650	410	1720	200	142	418	2750	795	2010
	IIIB-3	0966							1000					9950
	IIIB-1	0000							090					10610
TMF11-1250	(глухой ввод)	2700	1300	345	1130	650	410	1825	200	184	429	3250	875	10010
	IIIB-3	0966							1000					10950
	IIIB-1	0730							090					12610
TMT11-1600	ГМГ11-1600 (глухой ввод)	0011	1565	426	1260	782	410	2180	200	274	516	4250	1300	15010
	IIIB-3	10490							1000					12950



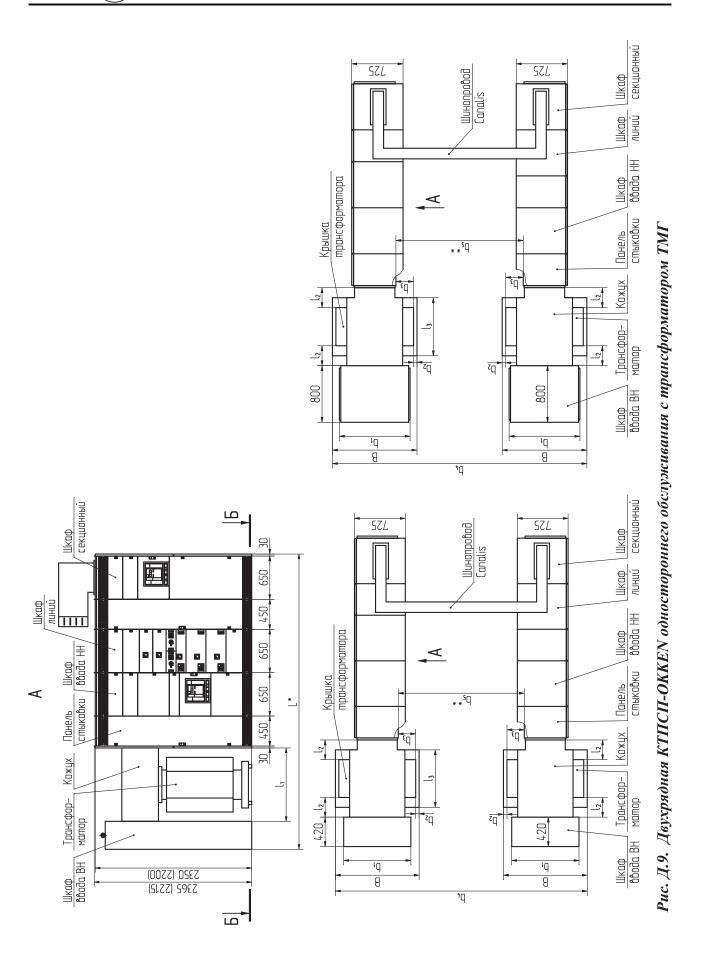
Габлица Д.7.2

Наэнапаниа шкафа	Тип выключателя на	йинин оттолина	Масса шкафа,
ин шкафа	вводе	тип отчодащих линии	кг, (средняя)
IIIB1	глухой ввод		130
IIIB3	BH-10/400-16 ₃ -10У3		300
1IIC			300
IIIIR	Masterpact NW32,		059
	Masterpact NT16		
		Masterpact NT16 (Compact NS16) – до 2 шт.	
111111		Compact NS 100 – 630 A – до 14 шт.	650
		Блоки управления электродвигателем – до 48 шт.	
JIIIC	Masterpact NW32,		039
IIIIC	Masterpact NT16		000

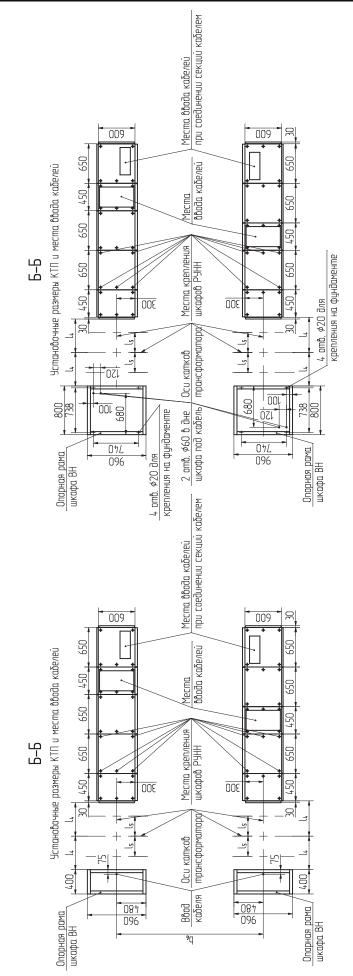
Комплектные трансформаторные подстанции КТПСП мощностью от 160 до 1600 кВ·А на базе конструктива ОККЕN. Техническая информация.

1) * Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий.

2) Размеры отверстий для крепления шкафов к полу — смотрите приложение А. 3) Размеры мест подвода кабелей — смотрите приложение Б.


Габлица Д.8.1

						Размеры, мм	bi, MM					Масса, кг	1, KT	Mosso
Тип транс-	Тип шкафа											транс-	B TOM	KTHCH
форматора	ввода ВН	*1	1_1	1_2	13	14	15	В	b_1	\mathbf{b}_2	\mathbf{b}_3	форма-	числе	KT KT
												тора	масла	T.
	IIIB-1	0022							090					2050
TMF11-250	(глухой ввод)	00//	1000	234	820	500	275	1140	200	4	566	920	225	0666
	IIIB-3	8460		_					1000					6290
	IIIB-1	0002							050					0133
TMF11-400	(глухой ввод)	006/	1100	297	855	550	330	1350	200	72	303	1255	325	0700
	IIIB-3	0998							1000					0969
	IIIB-1	0028							090					7830
TMF11-630	(глухой ввод)	0000	1300	359	1000	650	410	1545	200	80	393	1860	450	0507
	IIIB-3	0906		_					1000					8170
	IIIB-1	0028							090					0610
TMF11-1000	(глухой ввод)	0000	1300	345	1135	650	410	1720	200	142	418	2750	795	2010
	IIIB-3	0906							1000					9950
	IIIB-1	0028							090					10610
TMF11-1250	(глухой ввод)	0000	1300	345	1130	650	410	1825	200	184	429	3250	875	10010
	IIIB-3	0906							1000					10950
	IIIB-1	8830							090					12610
TMF11-1600	(глухой ввод)	0000	1565	426	1260	782	410	2180	200	274	516	4250	1300	12010
	IIIB-3	9590							1000					12950


Габлица Д.8.2

Назначение шкафа	Тип шкафа	Тип выключателя на вводе	Тип отходящих линий	Масса шкафа, кг, (средняя)
Drog DII	IIIB1	глухой ввод		130
БВОД БП	IIIB3	BH-10/400-16 ₃ -10У3		300
Панель стыковки	2ПС			300
Шкаф ввода	2ШВ	Masterpact NW32, Masterpact NT16		959
Шкаф линий	2111.71		Masterpact NT16 (Compact NS16) – до 3 шт. Compact NS 100 – 630 A – до 14 шт. Блоки управления электродвигателем – до 48 шт.	959
Шкаф секционный	2ШС	Masterpact NW32, Masterpact NT16		929

Комплектные трансформаторные подстанции КТПСП мощностью от 160 до 1600 кВ·А на базе конструктива ОККЕN. Техническая информация.

1) * Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий.

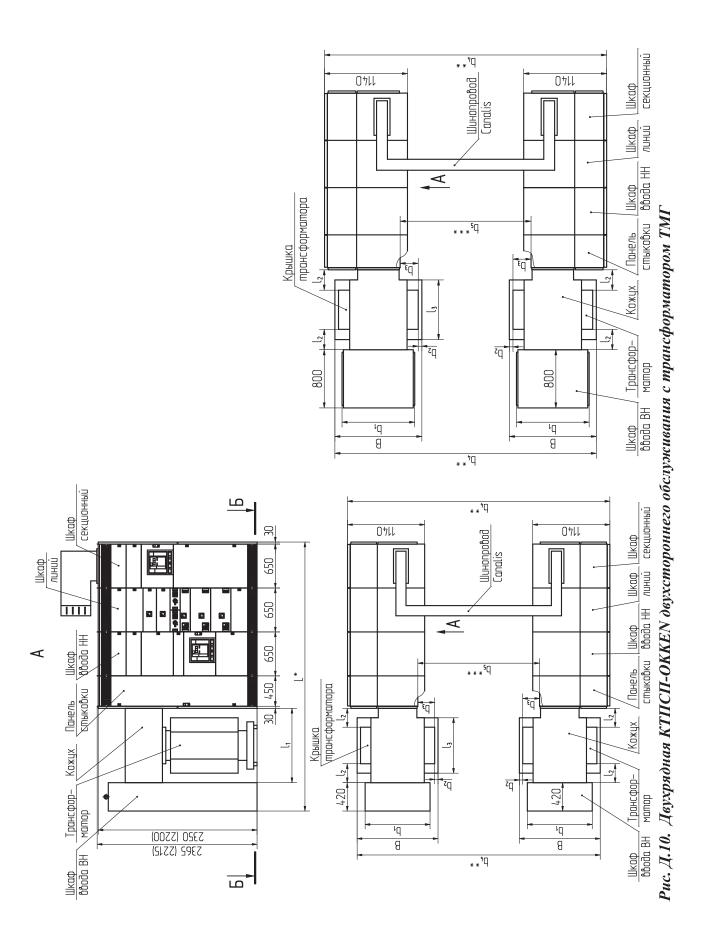
2) ** Допускается изготовление КТП с расстоянием между фасадами секций РУНН отличных от указанного.

3) Размеры отверстий для крепления шкафов к полу – смотрите приложение А

4) Размеры мест подвода кабелей – смотрите приложение Б.

5) Допускается изготовление КТП с расположением силовых трансформаторов справа от шинной перемычки.

6) Высота КТП с шинопроводом Canalis определяется размерами выбранных секций шинопровода


Таблица Д.9.1

Тип							Pa3	Размеры, мм	MM						Масса, кг	a, Kr	Mooon
транс-	Тип шкафа	4											3		транс-	B TOM	масса КТПСП
форма-	BH	* T	1_1	l_2	13	14	15	В	\mathbf{b}_1	b ₂	\mathbf{b}_3	b 4	\mathbf{b}_{5}^{**}	\mathbf{b}_{6}	форма-	числе	KIT KL
тора															тора	масла	W
TVAT	IIIB-1	1220							020								0505
- IIVII -	(глухой ввод)	4550	1000	234	820	500	275	1140	006	4	266	3540	1800	2400	920	225	0666
0007	IIIB-3	4710						<u>, , , , , , , , , , , , , , , , , , , </u>	1000								6290
TML-	IIIB-1	4430	1100	000	ų, ų	0	0	6	096	C			1000	000	100	300	6620
400	(Плухои ввод)		1100	767	633	000	000	1330		7/	202	00/0	1000	7400	1733	272	
200	IIIB-3	4810						. ,	1000								0969
TMI-	IIIB-1	4630	1000	0	000		110		096	0		7			10/0		7830
620	(глухои ввод)		1300	339	1000	000	410	1242		20	595	4445	7300	7900	1860	450	
050	IIIB-3	5010							1000								8170
TMI-	IIIB-1	4630	0		(((1	096	,		0	0		1	i C	9610
1000	(глухои ввод)		1300	345	1135	000	410	1/70		147	418	2170	7800	3400	7/20	795	
1000	IIIB-3	5010							1000								9950
TMT-	IIIB-1	4630							096								10610
1250	(глухой ввод)		1300	345	1130	029	410	1825		184	429	5225	2800	3400	3250	875	
1230	IIIB-3	5010							1000								10950
TMT	IIIB-1	1805							090								12610
1600	(глухой ввод)	4072	1565	426	1260	782	410	2180	200	274	516	5580	2800	3400	4250	1300	17010
1000	IIIB-3	5275						- '	1000								12950

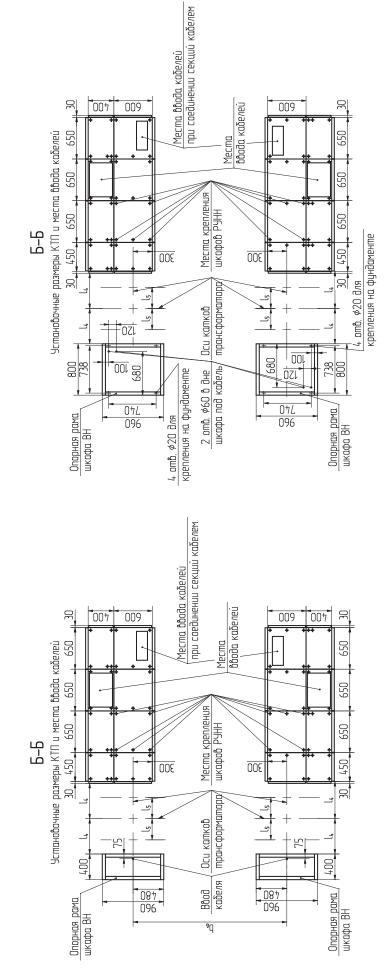


Таблица Д.9.2

	t			
Назнапение шкафа Тип пкафа	Тип выключателя	на	Тип отхонящих пиний	Масса шкафа,
тип шкафа вводе	вводе			кг, не более
IIIB1 глухой ввод	глухой ввод			130
IIIB3 BH-10/400-16 ₃ -10У3	BH-10/400-163-103	/3		300
IIIC — —				300
1IIIB Masterpact NW32, Masterpact NT16	Masterpact NW32 Masterpact NT16	,		059
1ШЛ —			Masterpact NT16 (Compact NS16) – до 2 шт. Compact NS 100 – 630 A – до 14 шт. Блоки управления электродвигателем – до 48 шт.	059
1IIIC Masterpact NW32, Masterpact NT16	Masterpact NW32, Masterpact NT16			959

Продолжение рисунка Д.10

- 1) * Длина КТП по фасаду определяется набором шкафов для конкретного заказа. Данные указаны для двухтрансформаторной КТП с двумя шкафами линий
- 2) ** Габаритный размер КТП мощностью 250-400 кВА определяется габаритом шкафов. Габаритный размер КТП мощностью 630-1600 кВА определяется габаритом трансформаторов.
- 3) *** Допускается изготовление КТП с расстоянием между фасадами секций РУНН отличных от указанного
- 4) Размеры отверстий для крепления шкафов к полу смотрите приложение А 5) Размеры мест подвода кабелей – смотрите приложение Б.
- 6) Допускается изготовление КТП с расположением силовых трансформаторов справа от шинной перемычки.
 - 7) Высота КТП с шинопроводом Canalis определяется размерами выбранных секций шинопровода

Таблица Д.10.1

							,		1				r		
Magaga	КТПСП	KT	T.	5950	6290	6620	0969	7830	8170	9610	9950	10610	10950	12610	12950
Масса, кг	B TOM	числе	масла	225		325		450		795		875		1300	
Macc	транс-	форма-	тора	920		1255)	1860		2750		3250		4250	
		\mathbf{p}_{6}		2400		2400	1	2900		3400		3400		3400	
)	b_5		1800		1800		2300		2800		2800		2800	
)	\mathbf{b}_4		3880		3880		4445		5120		5225		5580	
		\mathbf{b}_3		266		٤0٤)	393		418		429		516	
		b_2		4		CL	1	80		142		184		274	
, MM		b_1		096	1000	096	1000	096	1000	096	1000	096	1000	096	1000
Размеры, мм		В		1140 960		1350 960)	1545 960		1720		1825		2180 960	
Pa		15		275		330)	410		410		410		410	
		4		500		250))	650		929		929		782	
		13		820		97 855		1000		345 1135		1130		426 1260	
		1 ₂		234		297		359				345			
		1		1000		1100 2		1300		1300		1300		1565	
	÷	Γ		3880	4260	3980	4360	4180	4560	4180	4560	4180	4560	4445	4825
	Тип шкафа	BH		IIIB-1 (глухой ввод)	IIIB-3	IIIB-1 (FIIVXOŬ BROT)	IIIB-3	ШВ-1 (глухой ввод)	IIIB-3						
Тип	транс-	форма-	тора	TML-	720	TML-	400	TMF-	050	TML-	1000	TMF-	0671	TML-	1600

Таблица Д.10.2

Масса шкафа, кг, не более	130	00ε	00ε	059	059	059
Тип отходящих линий					Masterpact NT16 (Compact NS16) – до 3 шт. Compact NS 100 – 630 A – до 14 шт. Блоки управления электродвигателем – до 48 шт.	
Тип выключателя на вводе	глухой ввод	BH-10/400-16 ₃ -10У3	_	Masterpact NW32, Masterpact NT16		Masterpact NW32, Masternact NT16
Тип шкафа	IIIB1	IIIB3	2ПС	2IIIB	2111.71	2IIIC
Назначение шкафа	Drog DII	БВОД БП	Панель стыковки	Шкаф ввода	Шкаф линий	Шкаф секционный

ПРИЛОЖЕНИЕ Е ПРИМЕР ЗАПОЛНЕНИЯ ОПРОСНОГО ЛИСТА

(справочное)

Таблица Е.1. Пример заполнения опросного листа

Общие технические требования и сведения			
Наименование, адрес, контактная информация проектной			
организации			
Наименование объекта, куда поставляется оборудование			
Заказываемое к поставке оборудование		2КТПСП-ОККЕN- 630/10/0,4-У3	
Компоновка	однорядная	однорядная	
	двухрядная		
	(расстояние между фасадами)		
Система заземления		TN-S	
Трансформатор силовой	масляный	сухой серии ТСЗГЛ	
	сухой		
Количество трансформаторов		2	
Напряжение и род тока	220 В постоянного	220 В, 50 Гц	
цепей управления	220 В, 50 Гц		
Тип обслуживания	Одностороннее	- одностороннее	
	Двухстороннее		
Вид разделения ограждениями и перегородками		4b	
Высота шкафов РУНН, мм		2350	
Степень защиты шкафов РУНН		IP-31	
Исполнение шкафов РУНН по сейсмостойкости		_	

Таблица Е.2. Пример заполнения опросного листа Masterpact моторный выкатной NW10H 1IIIC 5.0A 10001000 Насосная № 2 BBTHF-LS|BBTHF-LS|BBTHF-LS|BBTHF-LS|BBTHF-LS|BBTHF-LS на Polyfast STR23 SE 2(4*150) Compact съемный NOE9SN ручной 500/5 500/5 630 450 X Гараж № 2 на Polyfast STR23 SE съемный 2(4*150) Compact N0630N ручной 400/5 400/5 630 400 \mathbf{K}^{\uparrow} STR23 SE на Polyfast 2(4*150) Резерв съемный Compact NS630N ручной 400/5 400/5 630 350 \overline{X} Насосная № 1 на Polyfast STR23 SE съемный 2(4*150) Compact NS630N ручной 5/005 500/5 430 630 450 \mathbf{K}^{\uparrow} Гараж № 1 на Polyfast STR23 SE 2(4*150) съемный Compact NS630N ручной 5/005 500/5 450 400 630 X STR22 SE на Polyfast 2(4*150) съемный Резерв NS250N Compact ручной 200/5 200/5 180 250 \overrightarrow{X} STR23 SE на Polyfast 2(4*150)съемный Compact NS630N Резерв ручной 400/5 400/5 400 350 630 \mathbf{K}^{\uparrow} трансформа-4TM.02.2-38 Masterpact моторный Ввод от зыкатной NW16H1 1000/5 0-500 B тора Т1 1111B 0091 1600 5.0A 800/5 N2XSE2Y-10 Ввод 10 кВ от 3РУ NALF ручной IIIB-3 3x70630 조 Независимый расцепитель Исполнение по установке cBepxy Габличка на двери (наименование К↑ - снизу Грансформаторы тока Гок расцепителя, А Номинальный ток, Схема главных цепей Гип расцепителя Гип подключаемого кабеля Номер фидера в шкафу О.Ј Расчетный ток фидера, А ип привода Амперметр Вольтметр Номер панели в щите Гип шкафа, панели шкафу или фидеру Подвод кабеля к Тип потребителя) приборы Выключатель тельные -идэмери-

Комплектные трансформаторные подстанции КТПСП мощностью от 160 до 1600 кВ·А на базе конструктива ОККЕN. Техническая информация.

ПРИЛОЖЕНИЕ Ж ОПРОСНЫЙ ЛИСТ НА СИЛОВЫЕ ТРАНСФОРМАТОРЫ

Номинальная частота	Гц
Номинальная мощность	D.4
	кВА
4 Номинальное напряжение стороны ВН	
5 Номинальное напряжение стороны НН	
Способ, диапазон и ступени регулирования напряжения на стороне	
ВНПБВ	%
7 Напряжение короткого замыкания при 75° С (±10 %)	
Потери холостого хода (+15 %)	Вт
Потери короткого замыкания при 75° С (+10 %)	Вт
Схема и группа соединения обмоток	·
Климатическое исполнение и категория размещения	
Степень защиты	
ечания:	
[] [] [] [] [] [] [] [] [] []	Способ, диапазон и ступени регулирования напряжения на стороне ВН

Пояснения к заполнению опросного листа на силовой трансформатор:

Строка 1: здесь следует указать тип трансформатора (ТС, ТС3, ТС3ГЛ, ТСГЛ, ТМ, ТМГ, ОМ, ОМГ и т.д.).

Строка 2: заполняется, если номинальная частота отличается от 50 Γ ц (по умолчанию – принимаем 50 Γ ц).

Строки 4, 5: заполняются обязательно; номинальные напряжения должны быть указаны для режима холостого хода.

Строка 6: заполняется, если требуется регулировка напряжения по стороне ВН (например, $\pm 2x2,5$ % означает, что на обмотке ВН предусмотрена регулировка вверх от номинального напряжения две ступени по 2,5 % каждая и вниз две ступени по 2,5 % каждая; или указывается другой диапазон, например, $\pm 2x2,5\%$; $\pm 1x2,5\%$); если регулировка не требуется – указывается: без регулировки.

Строки 7, 8, 9 заполняются в том случае, если указанные в них параметры имеют решающее значение для заказчика; если строки остаются незаполненные, то параметры, представленные в них, принимаются по усмотрению завода.

Строка 10: заполняется обязательно, причем первый знак относится к обмотке ВН (то есть высшего напряжения, а не высокого, и не первичного или вторичного), второй знак относится к обмотке НН (то есть низшего напряжения, а не низкого, и не первичного или вторичного); здесь обязательно должно быть отражено наличие нулевого вывода в схемах «звезда с нулем» или «зигзаг с нулем»: например,

- обозначение Д/У-11 означает, что обмотка ВН соединена в «треугольник», обмотка НН соединена в «звезду» (без вывода нулевой точки), группа соединения — одинидцатая;

- обозначение Ун/У-0 означает, что обмотка ВН соединена в «звезду» с выводом нулевой точки, обмотка НН соединена в «звезду» (без вывода нулевой точки), группа соединения – нулевая.

Строка 11: указывается буквенное обозначение климатических условий и цифровое обозначение категории размещения в соответствии с ГОСТ 15150-69. По умолчанию принимаем: для масляных трансформаторов (ТМГ)-У1 (У — для районов с умеренным климатом, 1- для наружной установки); для сухих с геафолевыми обмотками (ТСЗГЛФ) –У3.

Строка 12: указывается степень защиты по ГОСТ 14254-96 от внешних твердых предметов (обозначается первой характеристической цифрой) и степень защиты от воды (обозначается второй характеристической цифрой); по умолчанию принимается: для масляных трансформаторов и сухих без кожуха - IP 00 — нет защиты от внешних твердых предметов и нет защиты от воды; для для сухих с защитным кожухом —IP 21.

Строка «Примечания»: заполняется при наличии других требований, не вошедших в предыдущие строки.

Система менеджмента качества проектирования, разработки, производства и поставки трансформаторов и комплектных трансформаторных подстанций сертифицирована международным органом по сертификации

"КЕМА", Голландия (№ 99535 om 01.01.2000) на соответствие МС ИСО 9001:2010 и национальным органом по сертификации БелГИСС (№ ВҮ/112 05.0.0.0034 om 24.12.1999) на соответствие СТБ ISO 9001-2009.

Силовые трансформаторы соответствуют международным стандартам серии МЭК 60076 и сертифицированы Европейским нотифицированным органом "Словацкий электротехнический институт EVPU" (сертификаты соответствия № 00547/101/1/2005, № 00548/101/1/2005).

В связи с постоянным совершенствованием конструкции и технологии изготовления изделий в настоящем каталоге могут иметь место отдельные расхождения между описанием и изделием, не влияющие на работоспособность, технические характеристики и установочные размеры изделий.

ул. Уральская, 4 220037, г. Минск Республика Беларусь

Отдел маркетинга и торговли:

тел.: (+375 17) 230-15-35, 246-15-34

факс: (+375 17) 230-42-26, 246-15-74

E-mail: bz@metz.by

Конструкторский отдел:

тел.: (+375 17) 246-16-74, 245-55-13

факс: (+375 17) 245-52-01

E-mail: ugk@metz.by

http://www.metz.by